Efficient Parameter Tuning for NSGA-II in Training
Multi-Objective Generalist Game-Playing Agents
Evolutionary Computing (X_400111) — Group 17

Evaline Bosch Jacco Broere
2753468 2749073
Caspar Hentenaar Gijs van Meer

2778609 2754711




1 INTRODUCTION

Multi objective optimization problems are commonly solved and
well-suited for evolutionary algorithms, NSGA-II is a particular
evolutionary algorithm designed for solving these Multi-objective
problems efficiently and effectively [6]. The use of NSGA-II intro-
duces a set of hyperparameters that could be tuned to improve
the model performance. Parameter tuning is an important subject
in modern machine learning [2, 14, 17], similarly it has proven
valuable in a multitude of evolutionary algorithms as well [13, 15].

Tuning hyperparameters can often be an inefficient process when
using naive methods, such as a grid search [9]. To improve on
this inefficiency, more informed methods were developed, which
incorporate pruning and sampling based on, e.g., successive halving
and Bayesian optimization. These approaches have proven effective
in hyperparameter search [10] and thus could also prove effective
in tuning for hyperparameters of evolutionary algorithms.

Given these findings, this report aims to answer the question:
"Does efficient parameter tuning increase the performance of NSGA-II
training a multi-objective, generalist game-playing agent?" More-
over, the report tests the generalizability of the algorithm using
differently-sized objective groups during training phases. To attain
this two tuned NSGA-II networks will be trained and tested. They
will be compared against the results of untrained NSGA-II networks
as benchmark comparisons. Furthermore, the results obtained in
[5] will serve as a benchmark paper to compare against.

2 METHODOLOGY
2.1 Evolutionary Algorithms

To investigate the effect of hyperparameter tuning, we set up a base-
line evolutionary algorithm (EA) with default parameters and an
equal algorithm, however, with the hyperparameters optimized us-
ing tuning. Further details on the tuning methodology are discussed
in section 2.2.

Both EAs utilize a single-layer perceptron network with 10 hid-
den units as the GA10 in [5] to translate the observed environment
into actions. The 265 weights of this network are trained using the
EAs as described here.

Firstly, we outline the components of the baseline EA, as the sec-
ond EA is a version of the baseline algorithm, but it incorporates (hy-
per)parameter tuning. This paper makes use of the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) based on [6]. NSGA-II at-
tempts to alleviate the three main problems that multi-objective
evolutionary algorithms face: their computational complexity, non-
elitism approach, and the need of specifying a sharing parameter.
NSGA-II solves these concerns in various ways. NSGA-II achieves
a lower computational complexity as explained in [6]. Elitism is
ensured by constructing a population consisting of both the parents
and the offspring. Due to this procedure, the current best solutions
are preserved. The sharing parameter is replaced by a comparison
operator ensuring diversity. Comparisons in NSGA-II are drawn
first by non-domination rank and ties are broken using crowding
distance as described in [8]. By incorporating crowding distance
in the comparisons between individuals, a diversity of solutions is
ensured.

The baseline NSGA-II we employ is implemented in the pymoo
package for Python [4]. The default setup for NSGA-II in pymoo
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uses Simulated Binary Crossover (SBX), described in [7], as its
crossover operator, with 7, = 15 and p. = 0.9, denoting the scale
parameter of the exponential distribution and the probability of a
single weight being included in crossover respectively. The default
mutation operator is polynomial mutation as described in [7], with
Im = 20 and p,; = 0.9, also denoting the scale parameter of the
exponential distribution and the probability of a weight being mu-
tated respectively. Furthermore, parent selection is performed by
tournament selection [12], using tournament size x = 2.

In the second EA two more operators are included as options to
choose from during the tuning of the algorithm. Namely, a Gauss-
ian mutation operator is included which updates the weights of
the neural network by adding noise sampled from a normal distri-
bution with a scale parameter, o. Parent-Centric crossover (PCX)
is included as a second crossover option, introducing two scale
parameters for sampling from the normal distribution. Moreover,
the tournament size, k, is also optimized during tuning. The choice
of operators and their final parameters is made using the procedure
outlined in 2.2.

2.2 Tuning

The setup of the NSGA-II as described in section 2.1 introduces
a set of hyperparameters that can be tuned in an attempt to in-
crease performance on the task at hand. We propose the use of the
open-source hyperparameter optimization framework Optuna [1].
Optuna addresses problems inherent to common hyperparameter
optimization approaches, such as the requirement of a static search
space for the parameters, through the employment of dynamically
constructed parameter spaces. Moreover, Optuna improves on the
cost-effectiveness by implementing efficient sampling and pruning
mechanisms.

Our setup of Optuna employs a Tree-structured Parzen Estimator
(TPE) [3], which fits a pair of Gaussian Mixture Models (GMM).
For efficient pruning, Optuna utilizes Asynchronous Successive
Halving (ASHA)[11]. Using this framework requires defining a
hyperparameter space to sample from. Using the notation from
section 2.1. Probability parameters, p, are sampled from [0, 1], scale
parameters 7 for the exponential distribution from [0, 50], scale
parameters, o, for the normal distribution are sampled from [0.1,
2] and the tournament size k from {2, ..., 8}. The framework then
uses the TPE to continuously sample from this hyperparameter
space efficiently through Bayesian optimization principles [1].

2.3 Experimental Setup

Two different groups of enemies are considered for which the multi-
objective optimization performance is recorded, namely, the three
enemy group {2,5,7} and the four enemy group {2,6,7,8}. We
found that the behaviour learned on these groups generalized best
to all eight enemies through while keeping computing time feasible.
The default NSGA-II and NSGA-II incorporating parameter tuning
are trained on both enemy groups. Parameter tuning is performed
using 50 trials per enemy group, i.e., iterations of hyperparameter
tuning. In each trial, the NSGA-II is trained for 10 generations
with a population size equal to 25, sampling new hyperparameters
each trial as outlined in 2.2. The best parameters for both enemy
groups are then stored for use in the final algorithm runs. Both
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enemy groups and two sets of hyperparameters yield 4 setups
to be evaluated. Finally, for each of these setups, the NSGA-II is
trained using a population size of 50 and 30 generations. Ten runs
are executed for each setup over which results are averaged. For
the fitness plots, we use the mean average and maximum average
fitness scores. To show the individual gain of the best individuals
from these 10 runs per EA, we collect the average individual gain
from 5 repetitions of a single test against all 8 enemies. Lastly, we
use the package SciPy in Python to perform the t-tests [16].

3 RESULTS

3.1 Parameters

Table 1 shows the different parameters that have been found during
the tuning. We find that after tuning the parent-centric crossover
(PCX) is preferred over the simulated binary crossover (SBX) oper-
ator and that polynomial mutation (PM) is preferred over Gaussian
mutation which is neither used in the baseline. Furthermore, we see
the crossover parameters for both tuned networks being relatively
close to each other whereas the mutation parameters diverge more.

EA Crossover Mutation Tournament
selection
=1 =20
Benchmark SBX ;}: O.Z PM Z: 0.9 K=2
Tuned for 2, 5, 7 pcx 7 0.57 17 38.12 k=3
oy =168 p =083
Tuned for 2, 6,7,8 | PCX o1 =087 m 7T 28.60 K=2
oy =158 p =024

Table 1: Optimized hyperparameters using Optuna

3.2 Fitness
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Figure 1: Mean fitness over 30 generations and averaged over 10 runs

The mean fitness averaged over 10 runs is plotted in figure 1. For
both enemy groups, the mean fitness is slightly higher in the early
generations for the EA incorporating parameter tuning. After 4 to
5 generations, however, the mean fitness for the tuned algorithm
develops more slowly and is lower than the benchmark.

Figure 2 displays the maximum fitness averaged over 10 runs. For
the EAs trained on the group of 4 enemies, similar patterns as for the
mean fitness plots emerges. The EA incorporating parameter tuning
achieves a higher maximum fitness early on, falling behind in later

Statistic Enemy group | t-score | p-value

Mean fitness 2,5,7 2.508 0.027
2,6,7,8 5.061 <0.01

Maximum fitness 2,5,7 4.97 <0.01
2,6,7,8 2.465 0.024

Table 2: Welch’s t-test for the difference in max and mean fitness
between tuned and non-tuned NSGA-II results at generation 30

generations. For the EA trained on the group of three enemies the
performance of both the tuned NSGA-II and the benchmark develop
similarly, but the former finishes lower. Note that maximum fitness
is the highest mean fitness value over the enemy group present
in the population. Table 2 contains the results of the t-test for the
difference in mean and maximum fitness between the tuned and
non-tuned algorithms. These tests point out that the mean and
maximum fitness are significantly higher at a 5% confidence level
when using the benchmark NSGA-II.

enemy: 2,5,7 80 enemy: 4,6,8,2
90
75
85
70
[} [}
G 80 3
S 565
75
60
70 —— benchmark
55 — tuned
65
0 10 20 30 0 10 20 30
generation generation

Figure 2: Max fitness over 30 generations and averaged over 10 runs

3.3 Gain

Figure 3 shows the highest individual gain averaged over 5 repeti-
tions and 10 runs, for both the tuned and benchmark EA on all 8
enemies. These results show that the median for both the bench-
mark and tuned EA trained on enemies 2, 5, and 7 is higher than
that of the EAs trained on enemies 2, 6, 7, and 8. Moreover, from
the t-tests in table 4 it can be inferred that the mean gain does not
differ significantly at a 5% confidence level between the tuned and
non-tuned NSGA-II. This applies to both enemy groups. Table 3
shows player remaining energy averaged over 5 repetitions for the
best-performing individual in all runs. This is an individual found
during the sixth run of the tuned EA whilst training on enemies
2,5, and 7. It can be seen that this individual not only defeats the
enemies that it was trained on but also enemy 8. Furthermore, the
behaviour of the player causes enemy 1 to glitch and walk into the
wall, resulting in a draw. Table 3 also displays the remaining player
energy for the best performing EA’s employed by [5] which use the
same neural network configuration as utilized here.

4 DISCUSSION
4.1 Results

As the evolutionary algorithm is subject to stochastic behaviour
the limited number of trials (50) used for tuning might have led to a
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Figure 3: Box plot of highest gain individuals

Enemy number | 1 | 2 | 3 | 4 5 6| 7 8
NSGA-II (2,5,7) | 48 | 82| 0 0 [ 572 |0 | 742 | 31
GA-10(7,8) 0 74| 0 | 43| 60 | O 0 30
LO-10(1,2,5) 9 | 74 | 11 | 0 71 | 0 0 44

Table 3: Average player and enemy life after 5 repetitions for the
best-performing individual. Results for best performing GA-10 and
LO-10 as in [5] are also provided. Training enemy group is supplied
in parentheses.

Enemy group | t-score | p-value
{2,5,7} -0.089 | 0.931
{2,6,7,8} | -0.562 | 0.582

Table 4: Welch’s ¢-test for the difference in mean gain between the
tuned and non-tuned (benchmark) NSGA-IIL

suboptimal parameter setting and operator choice. The parameter
tuning resulted in use of a different crossover operator, PCX instead
of simulated binary crossover. Another difference was the four
enemy variant having a higher tournament pressure of 3 vs 2.

Observing the results in figures 1 and 2 the tuned EA achieves
slightly worse results among all metrics at the final generation. The
first 5 generations, however, are generally better for the tuned EA.
This suggests that the tuning procedure found parameters that are
effective for short training periods, which is in conformity with
the low number of iterations that the hyperparameter tuning was
performed for due to computational limitations. The resulting set
of hyperparameters is therefore not necessarily optimal for longer
training periods.

Figures 1 and 2 show that the 3 enemy group performs bet-
ter on average than the 4 enemy group. This might indicate that
when a larger group is chosen, a larger number of individuals and
generations might be needed to create a generalized model. One
would expect however that the 4 enemy variant has a higher ceiling
of performance, but due to the time constraints and issues with
implementing the model, this could not be verified.

However, we did find that the best individual was produced by
the tuned EA trained on the three enemy group. This individual
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consistently beat enemies 2, 5, 7, and 8. It will also cause enemy
1 to glitch and walk into the wall. This does show that the tuned
network is able to generalize to certain enemies it is not trained on.
It is also striking that an individual trained on 3 enemies is better
than one trained on four enemies. This could be caused by which
enemies the EA was trained on since it might be easier to generalize
with certain groups of enemies.

Comparing the best results to the baseline paper, which are
shown in table 3, we find that performance in comparison to the sim-
ilar GA-10 achieves comparable results. Disregarding the crashed
result on enemy 1, the model is able to beat a similar amount of en-
emies with similar scores. On average the NSGA-10 performs better
against winning enemies. The LO-10 model still slightly outper-
forms it, however, this could change without the glitch concerning
enemy 1.

4.2 Future work

Further investigation of the effects of parameter tuning for NSGA-
IT could continue by increasing the number of trials for tuning or
decreasing the search space for the hyperparameters. Removing the
choices for different operators in the tuning procedure could lead
to more robust results, along with a higher number of trials during
tuning. Another important direction for future research could be
increasing the population size and number of generations while
tuning, more closely resembling the final training phase. Clearly,
increasing these tuning parameters would cause the duration of
the tuning procedure to increase. A balance between tuning and
training effort should be found as the results found due to better
tuning might also be obtained by running a worse-tuned EA for
more generations. Lastly, further research into which enemy groups
cause the EAs to generalize better might also benefit the EAs.

5 CONCLUSION

In the introduction of this piece the question: "Does efficient param-
eter tuning increase the performance of NSGA-II training a multi-
objective, generalist game-playing agent?" was posed. The results
don’t allow for an affirmative answer to this question. What has
been found however is that for parameter tuning in problems simi-
lar to the one this paper covered it is important to choose a larger
number of generations to assure the model tunes to finding consis-
tent and robust improvements instead of short-term improvements.

Another possible finding is that there might be a limit to the
number of enemies one would want to train on when trying to cre-
ate a generalized strategy, especially when working with a lower
amount of generations and population. This was supported by the
fact the three enemy variant found a more generalized solution than
the four enemy variant, indicating there is some balance needed
between enemy count and population/generation size for general-
ization. Given this observation, it can be stated this is a time versus
performance balance to be evaluated.
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