Assignment 2 Data Mining Techniques

1[2619743) 1[122090678]

Reinier van Elderen and Caspar Hentenaar

Vrije Universiteit, De Boelelaan 1105, 1081HV, Netherlands

This report reviews the process of creating a model for ranking Expedia hotel searches, based on the
original Kaggle competition: ” Personalize Expedia Hotel Searches - ICDM 2013”. Expedia has compiled
a dataset comprising user search query results, hotel characteristics, and competitor information. The
objective of both the original competition and this assignment is to devise an algorithm that ranks
hotel searches, thereby ensuring that the hotels most likely to be booked or clicked are displayed at the
top. This report delves into the dataset, applies feature engineering to enhance the data, explains our
model and evaluation methodology, and finally, discusses potential practical applications of our model.
An examination of related work precedes the presentation of our solution.

1 Business understanding

This section examines the three highest-scoring solutions from the original competition. These winners
showcased their approaches at the IEEE International Conference on Data Mining.

Despite their individual approaches, all winners of the Expedia Hotel Ranking Contest share common
elements, the most notable being the use of tree-based modeling methods. The first-place winner, Zhang
and Woznica (), utilized an ensemble of Gradient Boosting Machines (GBM), a decision tree-based
learning paradigm, trained with a loss function incorporating the Normalized Discounted Cumulative
Gain (NDCG). Wang and Kalousis (), the second-place winner, and Liu et al. (), the third-place
finisher, both deployed LambdaMART, another tree-based learning model. LambdaMART combines two
machine learning algorithms - LambdaRank and MART (Multiple Additive Regression Trees) - and is
specifically designed for solving ranking problems. By adopting LambdaMART, both Wang and Liu were
indirectly leveraging the power of gradient-boosting trees, akin to Zhang.

The preprocessing and feature engineering stages, however, revealed different strategies across the top
three solutions. For feature engineering, Zhang employed features which average numerical features over
searches, properties and destinations. Moreover he transformed categorical features to numerical features
by averaging the target over the categories. Lastly he came up with features for estimating the position
of a hotel in the previous and next searches, which also proved valuable. Missing values were imputed
with a negative value. In contrast, Wang filled missing values with worst-case scenarios. Moreover, he
implemented difference features to indicate a match or mismatch between the historical data and given
data. He also constructed a proxy for hotel quality by estimating the probability that a hotel was clicked
or booked, as we replicate in section 3.2. Bingshu took a unique approach with listwise features, focusing
on rankings within a search instead of relying solely on numerical values.

The preprocessing and feature engineering stages, however, saw different strategies across the top
three solutions. Zhang averaged numerical features across searches, properties, and destinations . He also
transformed categorical features into numerical ones by averaging the target over the categories. Further,
he created features to estimate the position of a hotel in previous and subsequent searches, proving
valuable. Zhang imputed missing values with a negative value. Conversely, Wang filled missing values
with worst-case scenarios, implemented difference features to denote a match or mismatch between the
historical data and given data, and constructed a proxy for hotel quality by estimating the probability
that a hotel was clicked or booked, as we replicate in section 3.2. Liu et al. () took a unique approach
by focusing on listwise features, which rely on rankings within a search, rather than solely on numerical
values.

The specific combination of preprocessing methods and the choice of model were unique to each win-
ner’s approach. Zhang’s utilization of the NDCG loss function in conjunction with a GBM ensemble
appears to have optimized his model’s performance for this specific problem. Liu et al. (), mean-
while, highlighted the importance of intra-search ranking. Despite each participant’s distinctive strategy,

2 R. Elderen, C. Hentenaar

a combination of feature engineering and tree-based modeling approaches led to their success in the
competition. Based on these insights, our study will mainly focus on tree-based methods and imple-
ment various features as outlined above. More specifically, we will employ the LambdaMART ranker
as implemented in Light GBM. Moreover, we plan to utilize several features, including normalized fea-
tures, intra-search ranking features, and desirability features, similar to the strategies employed by the
aforementioned authors.

2 Data understanding

The dataset is divided into a training set and a test set, roughly split 50/50. The training dataset
comprises 4,958,347 rows and 54 columns, with data spanning from November 1, 2012, to June 30, 2013.
The test set consists of 4,959,183 rows and 50 columns. The discrepancy of four columns between the
two arises from the target columns—click, booking, booking price, and position in the original Expedia
search—not being included in the test set.

The dataset columns provide information about the visitor, such as the mean historical rating, mean
historical price per night, and the country in which they are located. Furthermore, details about the
property (hotel) are included, such as the ratings of the hotel and room, a location desirability score,
and price. Lastly, data about the search and competitor pricing are incorporated, such as the number of
people, length of stay, and the availability of the given hotel from the competitor.

Since the target is not provided for the test set, we will create a model validation set ourselves. For
this purpose, we will use 15% of the training data.

Below, a table containing some descriptive statistics is provided for a subset of the training set columns.
From this table, we can observe that the data encompasses 199,795 searches returning 129,113 different
hotels. There seem to be outliers present in the price_usd column—the maximum price of 19.7 million
dollars appears unusually high. However, this could be the result of a speculative search from someone
curious about the cost of staying in a top-tier hotel for an extended period.

Table 1: Descriptive statistics by variable

unique min mazx mean null %
srch_id 199795 1.00 332785.00 | 166366.56 | 0.00
site_id 34 1.00 34.00 9.95 0.00
visitor_location_country_id 210 1.00 231.00 175.34 0.00
visitor_hist_starrating 312 1.41 5.00 3.37 94.92
visitor_hist_adr_usd 7799 0.00 1958.70 176.02 94.90
prop_country_id 172 1.00 230.00 173.97 0.00
prop-id 129113 1.00 140821.00 70079.18 0.00
prop_starrating 6 0.00 5.00 3.18 0.00
prop._review_score 10 0.00 5.00 3.78 0.15
prop-brand_bool 2 0.00 1.00 0.63 0.00
prop-location_scorel 337 0.00 6.98 2.87 0.00
prop_location_score2 9342 0.00 1.00 0.13 21.99
prop_log_historical_price 392 0.00 6.21 4.32 0.00
n price_usd 76465 0.00 19726328.00 254.21 0.00
srch_destination_id 18127 2.00 28416.00 14042.63 0.00
srch_length_of_stay 36 1.00 57.00 2.39 0.00
srch_booking_window 429 0.00 492.00 37.47 0.00
srch_adults_count 9 1.00 9.00 1.97 0.00
srch_children_count 10 0.00 9.00 0.35 0.00
srch_room_count 8 1.00 8.00 1.11 0.00
srch_saturday_night_bool 2 0.00 1.00 0.50 0.00
srch_query_affinity _score 199387 | -326.57 -2.49 -24.15 93.60

Assignment 2 Data Mining Techniques 3

Let us then consider the missing values in the dataset. Figure 1 displays the percentage of missing
values in the data by column. The 30 columns with the most missing values are displayed. From the plot,
it becomes apparent that the competitor and visitor history features are missing the most data.

Next, we address the missing values in the dataset. Figure 1 shows the percentage of missing values
in the data by column, displaying all columns with missing values. The plot reveals that the competitor
and visitor history features have the most missing data.

Fig. 1: Percentage of missing values by column

Percentage of missing values

Q
&
q’@Q < s © & < ‘2% S
R < § & b § §
© o NS N 57N 6 F KX
NS L & 3 & & &S
& & & 5 « oo& Qo& Qo& oo‘Q o(&

In addition to a substantial number of missing values, the dataset is quite imbalanced. Table 2 provides
the relative count of target classes. Remarkably, positive training instances (search results that were
clicked on or booked) comprise only 4.5% of all data. To address this imbalance, Zhang and Woznica
(2013) downsampled negative instances (those not booked nor clicked) and reported improved training
time and predictive performance. However, we were unable to replicate these results, as discussed in
Section 4.

Table 2: Relative count by category

Relative count
No booking or click 0.955
Booking 0.028
Click 0.017

Figure 6 investigates the correlation between property characteristics and the target variables click_bool
and booking_bool, as well as the correlation among the property characteristics themselves. Likely due
to the extensive size of the dataset, all displayed correlations are significantly different from 0, even
though rounding to 2 digits might make some correlations appear to be 0. It is worth noting that
prop_location_score2, prop_starrating, and prop_review_score all exhibit a positive correlation, as
one might expect from these features. Interestingly, location_score_1 appears to be nearly uncorrelated
with both target variables. The same holds true for prop_brand_bool and prop_log_historical_price,
features indicating whether a hotel is part of a brand and the logarithm of the historical prices for a given
hotel, respectively.

4 R. Elderen, C. Hentenaar

Fig. 2: Correlation plot between target variables and hotel characteristics

1.00
click bool 0.02 0 0 0.07 0 -
0.75

booking_bool 0.03 0.01 -0 0.07 -0 -

| 0.50
prop_starrating |
] 0.25
prop_review_score SRNOI02 0.03

- 0.00

prop_brand_bool - 0 0.01
- -0.25
prop_location_scorel — 0 -0
= —0.50
prop_location_score2 - 0.07 0.07
-0.75
prop_log_historical _price - 0 -0
‘\\ ol \\ . N . ~1.00
« « & & « & & &
5 & & o 5 o o AR
& & o & & & & &
& 7 & S N S &
N © 5 K & & &
< K & N X S
< K K o7
N < K

3 Data preparation

3.1 Handling missing values

As observed in the preceding section, several features have missing values. We need to devise an ap-
propriate method for imputing these values. Given that not every feature can be imputed in the same
manner, we propose strategies tailored to each feature based on common sense, literature review, or trial
and error.

One feature requiring special handling is orig_destination_distance, for which around 30% of all
values are missing. We elected to impute missing values with the mean of all recorded values, as setting
a distance measure to zero would be unrealistic.

For the location_score_2 feature, we found that some searches had missing values, while different
searches assigned a score to the same property. By filling these missing values with the mean score recorded
for this property, we reduced the number of missing values from 1,090,348 to just 182,213. Although this
seemed like a sensible solution, the model’s generalization performance suffered. We initially decided
to impute these missing values with -1, but upon testing, we discovered that validation performance
improved when this value was changed to 0.

Finally, let’s consider the data regarding competitor offerings. As seen from Figure 1, much of this
data is missing. We experimented with different values to replace the missing data, including the mean, -1,
and 0. The mean did not seem suitable for most columns due to the vast amount of missing information.
After some trials, replacement with 0 yielded the best performance. For compx_rate, compx_inv, and
compx_rate_percent_diff, we set the recorded value to 0 when values were missing. As outlined in
section 4, we employ a tree-based ranking algorithm, which allows us to assign this symbolic value
without implying a linear relationship, given that these boosting trees are nonlinear by nature.

3.2 Feature engineering

To extract additional insights from the dataset, we can introduce new features that may provide more
interpretability or relevancy for our model. The models we consider do not natively support the date_time

Assignment 2 Data Mining Techniques 5

feature as given. Therefore, we have generated five new features from the date_time feature: hour, day,
month, day_of_week, and is_weekend (a boolean feature).

We then incorporated difference features. The dataset includes information about a user’s historical
star rating and historical prices paid. These can be compared to the current star rating and price of a
property. This assumes a correlation between a user’s previous and current behavior, i.e., users might
favor properties within the same rating and price range as their past purchases. Importantly, we don’t
take the absolute difference here, as an increase or decrease in price might signify different things.

This comparison can also be applied to the prop_log_historical_price feature, which represents
the historical price for staying at a property. If the price has changed from the previous price it sold for,
this might indicate that a property has become more or less in demand.

We also added ranking features for six columns. This feature ranks the hotels in a search based on these
columns. The columns we used were price_usd, prop_starrating, prop_review_score, prop_location_scorel,
prop_location_score2, and usd_diff.

For the property features, we also added monotonic features giving the absolute distance from the
mean of properties booked and clicked.

mono_book = abs(value — mean(valuespooked))

mono_click = abs(value — mean(values jicked))

A significant number of the new features were normalization features. Here, we normalize the most
important property features concerning different indicators, as done by the second-place solution from the
original competition. This takes into account price differences between properties in different locations and
seasons. The same six features as ranking are used here. The different indicators that are used are srch_id,
prop_country_id, srch_destination_id, srch_length_of_stay, srch_booking_window, and month.
For each indicator group, we normalize the respective feature values. This involves subtracting the mean
of the feature values in a group from each individual feature value in that group and then dividing the
result by the standard deviation of the group’s feature values. We obtain

Tij — Mg
Zij = -
where x;; is the feature value for the jt" observation in the i** group, u; is the mean of the i*" group, and
o; is the standard deviation of the i*" group. The resulting z;; is the standardised or normalised value
for the j** observation of the feature in the i*" group

We also adopt desirability features following the feature engineering process of Wang and Kalousis
(). We use the observed probability of a hotel being booked or clicked on as a proxy for hotel
desirability:

booking(prop_id)

desire_booking = count(prop_id)

lick i
desire_click = CPPToP2E) (prop Zd)
count(prop-id)

Initially, these features were constructed using the entire training set, yielding a series (prop_id, desire_var_value),
which was then merged with both the training and validation data. However, constructing these features
using the training data worsened generalization results as the model quickly overfitted using these fea-
tures. This makes sense as the target is clearly leaking into the training data this way. Therefore, we
made a further split of the training data, one part to be used for training and the other solely used for
constructing desirability features. Although it seemed wasteful to use a significant part of the data solely
for the construction of 2 features, this procedure did increase generalization performance. After many
runs of hyperparameter optimization, the optimal split used for these features was between 30% and 50%.

6 R. Elderen, C. Hentenaar

We also added a feature called prop_id_count. This feature was added using the rationale that for
a property to be booked, it at least needs to be displayed. Therefore, the number of times a property is
present in the dataset might be of predictive value.

Finally, we converted some of the features into categorical features. This is a special feature used with
LightGBM that turns an integer-encoded feature into categories without the need for one-hot encoding.
We did this for the features hour, day, month, day_of_week, site_id, visitor_location_country_id,
prop_country_id, prop_id, and srch_destination_id. An overview of all features is provided in Table
3.

Assignment 2 Data Mining Techniques 7

Table 3: Overview of all newly created features

Feature Description
target A combination of click_bool and booking_bool,

where bookings are a five and clicks are a one
month Month extracted from datetime
day Day extracted from datetime
hour Hour extracted from datetime
day_of_week Day of week extracted from datetime

is_weekend

Boolean that indicates weekend extracted from datetime

norm_price_usd_srch_id

Hotel price grouped by search and normalised

norm_price_usd_prop_id

Hotel price grouped by property and normalised

norm_price_usd_prop-_country_id

Hotel price grouped by country of property and normalised

norm _price_usd_srch_destination_id

Hotel price grouped by search destination and normalised

norm_price_usd_srch_length_of_stay

Hotel price grouped by search length of stay and normalised

norm_price_usd_srch_booking_window

Hotel price grouped by booking window and normalised

norm_price_usd_month

Hotel price grouped by month when the search was performed and normalised

norm_prop_starrating_srch_id

norm_prop_location_score2_month

Same normalisation as with price
for star rating, review score, location score 1 and location score 2

usd_diff

The difference between the historic price a customer has paid
and the price of the property in the search

star_diff

The difference between the historic star rating the customer has booked

and the star rating of the property in the search

log_price_diff

The difference between the historic price a property has sold for
and the current price of the property

prop-id_count

The count of how often a property is shown in searches.

rank_usd_diff

A ranking of the difference in prices a customer historically paid
and the property price for each search

rank_log_price_diff

A ranking of the difference in prices a property previously sold for
and the current property price for each search

rank_price_usd

A ranking of the property prices for each search

rank_prop_starrating

A ranking of the property star ratings for each search

rank_prop_review_score

A ranking of the property review scores for each search

rank_prop_location_scorel

A ranking of the properties first location score for each search

rank_prop_location_score2

A ranking of the properties second location score for each search

mono_book_price_usd

The absolute value of the price of a property
subtracted by the average price of booked properties

mono_click_price_usd

The absolute value of the price of a property
subtracted by the average price of clicked properties

mono_book_prop_starrating

The absolute value of the star rating of a property
subtracted by the average star rating of booked properties

mono_click_prop_starrating

The absolute value of the star rating of a property
subtracted by the average star rating of clicked properties

mono_book_prop_review_score

The absolute value of the review score of a property
subtracted by the average review score of booked properties

mono_click_prop_review_score

The absolute value of the review score of a property
subtracted by the average review score of clicked properties

mono_book_prop_location_scorel

The absolute value of the first location score of a property
subtracted by the average first location score of booked properties

mono_click_prop_location_scorel

The absolute value of the first location score of a property
subtracted by the average first location score of clicked properties

mono_book_prop_location_score2

The absolute value of the second location score of a property
subtracted by the average second location score of booked properties

mono_click_prop_location_score2

The absolute value of the second location score of a property
subtracted by the average second location score of clicked properties

8 R. Elderen, C. Hentenaar

4 Modelling setup

In this section, we set up suitable models to tackle the problem at hand. The performance of these
models is evaluated using NDCG@bH, where bookings and clicks on a hotel are assigned values of 5
and 1, respectively. Content-filtering systems are naturally suited to this problem as they make numerical
predictions of the target based on the input features. The first step involves choosing an appropriate model.
We construct three benchmarks using K-nearest neighbours (KNN), Random Forest (RF) regressor,
and random ordering. We then explore the LambdaMART or LambdaRank model as implemented in
LightGBM, which is a state-of-the-art model for learning-to-rank (LTR) tasks (Lyzhin et al.,). This
model is based on a boosting trees algorithm, but the loss function is tailored to a specific Learning-to-
Rank task. Accordingly, a pairwise, Bernoulli loss is considered as described by C. Burges et al. ().
Given two samples ¢, j, where ¢ should be ranked higher than j, the target Y;; equals 1, while the converse
Y;; equals 0. These can be regarded as target probabilities. The goal of our model is to predict these
probabilities, denoted by Yc” The loss function then becomes the log-likelihood function on Bernoulli
distributed variables:

n n
1=

Z [Yijlog (YZJ) + (1 — K-j) log (1 - Yc”)]

1j=1

Minimization of this loss is carried out using a gradient boosting tree algorithm, where gradients are
adjusted using the NDCG, as described by C. J. Burges ().

Model quality evaluation is performed on the aforementioned validation set, which comprises 15% of
the training set data. Moreover, predictions of models that perform well in this validation step are evalu-
ated on an unseen test set in the Kaggle competition. With respect to evaluation metrics, only NDCG@5
is considered. The competition hosts chose this measure to evaluate submissions, so our model aims to
maximize NDCG@5. The LambdaMART model offers an added benefit of built-in feature importances,
which enhances the model’s explainability.

While we aim for a fair comparison, the LGBM ranker is much more efficient. It was not feasible to
run the KNN and RF as implemented in scikit-learn (Pedregosa et al.,) on the full dataset. For
the Random Forest model, runtime was roughly 4 minutes when training on 3% of the rows and taking
a subset of the 25 most important features as indicated by the LGBM ranker’s feature importances.
Runtime for the KNN regressor was even longer. In contrast, the LGBM ranker could fit the entire
training dataset with its 100 features in 4 minutes and 19 seconds. Consequently, we continue with 3% of
the instances and the 25 columns for the RF and KNN regressors. Performance for all models is evaluated
on the same validation set, consisting of 15% of the training instances.

We utilized Optuna for hyperparameter optimization. This library employs a TPE (Tree-structured
Parzen Estimator) algorithm, as described in detail by Bergstra et al. (), allowing for efficient tuning
of the hyperparameters in the selected models. The relevant domains and hyperparameters to be optimized
are presented in Table 4 below.

Assignment 2 Data Mining Techniques 9

Table 4: Optimization Parameter Ranges

Table 5: LGBM Parameter Ranges

Parameter Range

n_estimators 250 - 900 Table 6: RF Parameter Ranges

num _leaves 10 - 100 T — Fange g Table 7: KNN Parameter Ranges
max_depth 1-20 - Parameter Range
learning_rate 0.01 - 0.2 n-estimators 100 - 1000 n_neighbors 1-30
subsample 04-1 mjax,deptlll lit 13) 20 weights uniform, distance
colsample_bytree 04-1 2;2722251:?5&; 1 : 5 P 1,2
reg_alpha 0-0.2 maxﬁ feature; auto, sqrt algorithm |auto, ball_tree, kd_tree, brute
reg_lambda 0-0.2 bootétrap True 7False leaf_size 1-50
min_child_samples| 5 - 100 !

min_child_weight |0.0001 - 0.1

val_size 0.3-0.8

Experiment tracking was handled using Weights and Biases (WB), a platform freely available for
educational purposes. This tool was invaluable in logging validation performance during each training
iteration, as well as recording final performance metrics on the validation set. It also logged performance
on the training set, making it easy to spot models that were overfitting or underfitting.

In addition to performance metrics, WB monitored various system variables, such as CPU load and
memory usage, and provided simple visualization tools for all these variables. A brief report of the
experiments recorded using this tool can be accessed here.

5 Results

In Table 8, we present summary statistics for the NDCG@5 score from all runs during the hyperparameter
optimization process. The "Max” column reflects the NDCG@5 score on the validation data using the
best set of hyperparameters for each respective model. From this table, we observe that the KNN regressor
appears to perform only slightly better than a random ordering. The Random Forest (RF) exhibits a
significantly improved performance, although even its best run still underperforms the worst run of the
LGBM Ranker. The LGBM Ranker demonstrates the highest performance, achieving an NDCG@5 score
of 0.43 (rounded to two decimal places) on the validation set.

Table 8: Run Type Statistics

Run Type Maz Min Mean
LGBM Ranker 0.43 0.38 0.42
RF regressor 0.37 0.25 0.36
KNN regressor 0.18 0.16 0.17
Random 0.16 0.15 0.16

The NDCG@5 scores for all runs are also depicted in Figure 3. This visual representation echoes our
earlier findings. It confirms that the KNN performs on par with the random ordering, while the RF and
LGBM Ranker significantly outperform the other two. Among these, the LGBM Ranker outperforms the
RF model.

https://api.wandb.ai/links/vu-ml/6xxuvsgv

10 R. Elderen, C. Hentenaar

Fig. 3: NDCG@J5 of all runs by model

T T T T

0.40 - 1

D 035 |
v
=
.S
3
<
=]
S 030 ¢]
>
8 ’
w
S
0.25 1
3 ¢
[a)
Z

0.20 1

ors | ~ ==

1 1 1 1

LGBM RF KNN Random
Run type

To further substantiate our findings, we carried out a paired T-test on the NDCG by srch_id to
determine whether the LGBM Ranker’s performance is statistically significantly better than the other
models. The results are provided in Table 9. At any conventional confidence level, the LGBM Ranker
surpasses all benchmarks.

Table 9: Paired T-test on NDCG@5 for LGBM ranker against benchmarks

Test against Test Statistic p-value
Random Forest Regressor 30.27 0.00
KNN Regressor 87.27 0.00
Random order 92.83 0.00

The optimal model specifications, which have been compared above, are reported in Table 10. At the
time of writing (28th May), this winning model achieved a NDCG@5 of 0.40891 on the public leaderboard
of the unseen test set. This resulted in the 9th place on the public leaderboard.

Assignment 2 Data Mining Techniques

Table 10: Optimal Parameter Configurations

Table 11: LGBM Optimal Parame-

ters

Parameter

Optimal Value

n_estimators
num-_leaves
max_depth
learning_rate
subsample
colsample_bytree
reg_alpha
reg_lambda
min_child_samples
min_child_weight
val_size

421
36
9
0.075
0.441
0.445
0.134
0.135
96
0.065
0.315

Table 12: RF Optimal Parameters

Parameter Optimal Value
n_estimators 853
max_depth 12
min_samples_split 2
min_samples_leaf 5
max_features sqrt
bootstrap True

LGBM ranker evaluation

11

Table 13: KNN Optimal Parameters

Parameter

Optimal Value

n_neighbors
weights

p

algorithm
leaf_size

28
distance
1
ball_tree
43

The training and validation curves for the winning run (astral-tree-553) and an intermediate run
(fragrant-blaze-487) are plotted below using the metrics from WB. These metrics facilitate easy de-
tection of overfitting or underfitting. For the intermediate run, the training NDCG continually increases
to a much higher level compared to the final run. However, on the validation data, performance initially
improves and then declines substantially for the intermediate run. This is a clear indication of overfitting;
the model is learning the training set nearly perfectly, which negatively impacts its generalization perfor-
mance. Conversely, for the winning model, both the training and validation NDCG increase consistently
throughout their entire domain, and training halts once the increase in validation performance levels off.
This is the desired outcome.

Fig. 4: Training and Validation NDCG@5 for final and intermediate run

Training NDCG@5

intermediate
final

Validation NDCG@5

0.7

0.6

0.5

0.4

0.40

1 o37L

1 036

039F

038 I

—————
———

0 100

200

300 400 500

Iteration

0 100

200 300 400
Iteration

500

In Figure 5 below, we display all Optuna optimization runs for the LGBM ranker logged in WB.
A notable increase can be seen when the parameter set to be optimized is expanded and features are
encoded as categorical when applicable. The run where the boosting type was set to dart showed no
performance improvement and required significantly more time.

12 R. Elderen, C. Hentenaar

Fig. 5: Validation performance (NDCG@5) over time for all runs

040 [r@*ﬂ R

. R t-. ® categorical features
039 F o N .] e dart boosting
o3 Q : o desirability features longer training

- increased parameter optimalization set
037k . .] desirability features
L L L L M L
2023-05-19 2023-05-20 2023-05-21 2023-05-22 2023-05-23
Time

The LGBM ranker also offers the advantage of built-in feature importances. This is defined as the
number of times a particular feature is used across all trees in the model. The following plot shows the
15 most important features as identified by the winning model.

Fig. 6: Validation performance (NDCG@5) over time for all runs

T T T T

prop-id]
prop_country_id]
norm_price_usd_srch_id]
norm_price_usd_prop_id 1
rank_log_price_diff]
prop-id_count]
log_price_diff]

norm_prop_location_score2 _srch_id .

Feature

norm_prop_starrating_srch_id .
rank_price_usd .
orig_destination_distance .
norm_price_usd_srch_length_of stay .
norm_price_usd_srch_booking_window .
price_usd .

norm_prop_location_score2_prop_id .

0 500 1000 1500 2000
Feature count

As can be seen from the figure, the most important features appear to be related to property iden-
tification. Following that, many price-related features are prominent in this top 15. Scores and ratings
are of lesser importance. However, after the initial two features, feature importance decreases slowly and
most features seem to be utilized in the final model. Furthermore, normalized and ranking features seem
to enhance the predictive power of the model, typically ranking higher in terms of feature importance
than their untransformed counterparts.

Assignment 2 Data Mining Techniques 13

6 Deployment

The deployment of our model in a real-world scenario requires addressing several practical considerations,
primarily due to the dynamic and large-scale nature of the data.

Hyperparameter tuning for our final model, although time-consuming (taking several hours), is man-
ageable for a large company like Expedia, which would have superior computational resources to expedite
this process. Considering the continuous change in data, regular updates to the model are necessary. How-
ever, given the time commitment associated with tuning and validating the model, these updates may
be most efficiently implemented on a quarterly basis. Daily updates, while optimal, would primarily in-
volve retraining the model with the most current data, a process that took roughly 4 minutes in our
implementation.

Expedia may also face the challenge of integrating new properties into the recommendation system. As
the model is trained on historical data, it will inherently favor properties with an established record. To
ensure fair representation of new properties, a supplementary function could be incorporated to increase
their visibility. This would also contribute valuable data for the future refinement of the model.

For scalable implementation, the model could be containerized and deployed as a microservice within
Expedia’s existing digital infrastructure. This approach would enable easy scalability to manage increased
traffic by adding more instances of the service as required. The search engine of Expedia could then
interact with this service, providing a list of hotels matching a user’s search query, and in return, receive
a ranked order of these hotels to present to the user.

Post-deployment, regular monitoring of the model’s performance is crucial. Metrics such as the booking
location within the list can provide valuable insights. If users are not predominantly booking the top-
ranked suggestions, it may indicate that the model is not performing as expected, warranting further
investigation and potential refinement.

7 Learnings

I, Reinier, have learned a lot during this assignment. I had little experience with feature engineering
and machine learning models before this course. During the assignment, I learned what suitable methods
are to create new features, such as looking at differences and normalising features by other features.
Furthermore, I learned to work with model-tuning programs such as Optuna and Wandb. These programs
were invaluable in creating our final model and getting insight into the process. I did not expect that
tuning the hyperparameters of the model would have such a large impact as it did. The tuned model
increased the score by almost 1 compared to a non-optimised version.

Caspar:

I learned about learning to rank problems, the current state-of-the-art models for LTR and how to
implement those. For the first time I used Weights & Biases which greatly simplified the experiment
tracking process. Because of this I no longer had to run experiments twice when outputs were lost,
everything was saved in the cloud. Moreover, it was the first time I worked with a dataset containing
multiple millions of rows. The challenges this posed were interesting and called for new solutions regarding
data storage and loading.

References

Bergstra, James, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl (2011). “Algorithms for hyper-parameter
optimization”. In: Advances in neural information processing systems 24.

Burges, Chris, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg Hullender
(2005). “Learning to rank using gradient descent”. In: Proceedings of the 22nd international conference
on Machine learning, pp. 89-96.

Burges, Christopher JC (2010). “From ranknet to lambdarank to lambdamart: An overview”. In: Learning
11.23-581, p. 81.

14 R. Elderen, C. Hentenaar

Liu, Xudong, Bing Xu, Yuyu Zhang, Qiang Yan, Liang Pang, Qiang Li, Hanxiao Sun, and Bin Wang
(2013). Combination of Diverse Ranking Models for Personalized Expedia Hotel Searches. arXiv: 1311.
7679 [cs.LG].

Lyzhin, Ivan, Aleksei Ustimenko, Andrey Gulin, and Liudmila Prokhorenkova (2022). “Which Tricks are
Important for Learning to Rank?” In: arXiv preprint arXiv:2204.01500.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E.
Duchesnay (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of Machine Learning
Research 12, pp. 2825-2830.

Wang, Jun and Alexandros Kalousis (Dec. 2013). Personalized Expedia Hotel Searches — 2nd place. Pre-
sentation at ICDM 2013 — Dallas.

Zhang, Owen and Adam Woznica (Dec. 2013). Personalized Expedia Hotel Searches — 1st place. Presen-
tation at ICDM 2013 — Dallas. Compiled and presented by Adam Woznica, PhD.

https://arxiv.org/abs/1311.7679
https://arxiv.org/abs/1311.7679

	Assignment 2 Data Mining Techniques

