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Abstract

While bitcoin prices are on the rise, the bitcoin market is as volatile as ever.

These wildly fluctuating prices might exhibit patterns to be detected using machine

learning. In hopes of finding and profiting off such patterns, a Long Short-Term

Memory (LSTM) network and a random forest are trained on recent, high-frequency,

price data. Evaluating these predictions showed promise that the bitcoin market

is indeed predictable to some degree. Combining the predictions of the random

forest and LSTM network in a so-called ensemble, made trading based on these

predictions more profitable when accounting for transaction fees. Introducing a

threshold, which should be exceeded for trading to occur, further improved the

profitability under transaction fees. However, at a realistic level of transaction fees,

the ensembles were barely profitable and were outperformed by the buy and hold

strategy.
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1 Introduction

The inception of bitcoin came by the whitepaper of Nakamoto, 2009, a pseudonym for

an author or group of authors who remain anonymous to this day. This paper laid the

fundamentals for bitcoin as a digital, decentralized ledger and with that the fundamentals

for all cryptocurrencies after it. The interest for bitcoin seems to be steadily increasing

among the general public, as is implied by the increasing amount of search queries for the

word “bitcoin”, especially during price rallies (Google, 2021). Similarly, there seems to be

an increase in academic attention as can be inferred from the work of Fang et al. (2020).

They showed that over 85% of papers regarding cryptocurrency trading have been written

since 2018.

The largest difference between bitcoin and everyday currencies might be the decen-

tralized nature of bitcoin. Monetary policy, fraud detection, and facilitating (digital)

payments are all tasks of a central authority, usually banks and governments in the case

of regular currencies. For bitcoin, monetary supply increases at a publicly known geo-

metrically decreasing pace (Browne, 2020). Fraud detection and prevention are replaced

by proof of work requiring fraudsters to do an infeasible amount of computational work.

Payments are verified by a decentralized network of “miners”, computers working to gen-

erate a specific hash. The decentralized nature of the cryptocurrency market implies that

there is no downtime, miners across the world are online 24/7, confirming transactions.

This is in stark contrast to the strictly regulated stock markets which open and close

during set times, only on weekdays.

Various aspects of bitcoin and bitcoin trading might make it an interesting subject of

study. As Fang et al. (2020) note, the frequently occurring bitcoin price bubbles are a

popular subject of interest. Furthermore, due to cryptocurrencies being a relatively new

phenomenon institutional investors seem mostly absent yet. This absence of institutional

investors could mean that there are or were large inefficiencies present in the cryptocur-

rency market. Past tense might be more appropriate as institutional investors are taking

ever more interest in cryptocurrencies. The recent acquirement of bitcoin by Tesla (Tesla,

2021) is a great example of such an institutional investor, taking an interest.

Fang et al. (2020) show that 38.1% of papers in their survey are focused on predicting

returns for cryptocurrencies. Note that predicting returns would only be possible in a

market that is not efficient. Such a possibly inefficient market sparks interest in the

application of machine learning when constructing a trading strategy. Machine learning

might be able to derive patterns present in the erratic price behaviour of bitcoin, possibly

non-perceptible to the human trader.
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With the rise of computational power came advancements in machine learning. Exem-

plary of this are Long Short-Term Memory (LSTM) networks which are neural networks

consisting of a sequence of cells. This structure seems to allow LSTM networks to better

detect patterns in sequences. These networks have seen a much-increased use in various

disciplines, for instance in the speech-to-text service: Google Voice (Beaufays, 2015). In

addition to estimating more complex models, it is nowadays feasible to utilize ensemble

learning. Ensemble learning combines machine learning methods by introducing voting

principles to obtain a single classifier. This way, model performance increases through

replication or combination of well-known methods, random forests for example are built

by a large number of decision trees fitted to bootstrapped samples.

Although research on cryptocurrency trading is becoming ever more extensive some

blanks are still observed in current literature. Bitcoin being the first and currently most

established cryptocurrency seems to imply that most attention and funds of (institutional)

investors are dedicated to bitcoin. Other crypto-currencies could therefore be promising

for a trading strategy based on machine learning, due to a possible lack of professionalism

in the market.

As mentioned, institutional investors seem to be entering the market for cryptocurren-

cies. As a consequence, the market might have become more efficient. If that is indeed the

case the efficient market hypothesis prescribes that all information would be encompassed

in the current price. Prediction of bitcoin prices using machine learning and trading based

on this prediction would then be rendered useless. To construct a strategy that could be

used for live trading, it would therefore be fruitful to consider recent data. This leads

to another gap to be filled in, a strategy can only be viable for use in live trading if

transaction fees are accounted for during backtesting. Leaving trading fees out of consid-

eration is especially unrealistic since profits on individual trades are usually small in HFT.

As individual profits are small and trades are frequent, trading fees accumulate quickly.

Following this, more research could be devoted to the amount of trading to be done, or

more specifically, when not to trade. As the market becomes more efficient trading in

every period might not remain profitable due to a vanishing signal-to-noise ratio, forcing

traders towards sparse trading strategies in which trades don’t occur in every period but

only occasionally.

This piece will try to fill in the mentioned gaps and provide a current trading strategy

by answering the question: “How can random forests and LSTM networks be used and

combined to construct a profitable sparse trading strategy for cryptocurrency when facing

transaction costs?”

Answering this question might prove more important than ever as cryptocurrencies
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could provide an invaluable opportunity for further diversification of portfolios. To make

use of this opportunity, however, investors should be wary of the many artifacts present

in the cryptocurrency market. The price bubbles that seem to occur every so often, or the

occurrence of pump and dump schemes in which coins are bought and then quickly sold by

online communities. Hoping that the next person will buy their coins for a higher price.

The construction of a trading strategy that manages to remain profitable or even profit

from such artifacts might prove vital for investors looking to enter the cryptocurrency

market.

2 Theoretical Framework

When constructing a high-frequency trading strategy researchers and investors are faced

with a daunting amount of choices. Generally, three different types of decisions can be

distinguished: feature selection, modelling decisions, and the choice of evaluation frame-

work.

Regarding the decision of which features to use, as price movements are to be pre-

dicted, naturally, price data is included. Extending hereupon might lead to the inclusion

of technical indicators derived from this price data. Technical analysis has seen widespread

use by investors in constructing trading strategies even though the efficient market hy-

pothesis would suggest that results in the past carry no predictive value. Still, technical

indicators are often included when attempting to predict cryptocurrency prices. McNally

et al. (2018) even identified the 5 and 10 day Simple Moving Average (SMA) as the most

important features in their analysis. Vo and Yost-Bremm (2020) also made use of techni-

cal indicators by including the following indicators when fitting a random forest classifier:

Relative Strength Index (RSI), stochastic oscillator, Williams %R, Moving Average Con-

vergence Divergence (MACD), and On Balance Volume (OBV). By using these indicators

in conjunction with price data they seemed able to consistently generate excess returns

compared to buy and hold strategies. These high returns were likely due to very accurate

predictions of price movements, as indicated by an F1 score of 97% for predicting whether

prices go up or down at a 15-minute frequency.

Many authors consider different features for inclusion in their models, such as gold

spot prices, blockchain network characteristics, or data regarding search queries for cryp-

tocurrencies. This might be for good reason, as Kristoufek (2013) found a correlation

between bitcoin prices and online sentiment as measured by Google Trends data and

Wikipedia search queries. Similarly, he found a significant relation between bitcoin prices

and two bitcoin network characteristics: mining difficulty and hash rate in succeeding
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research (Kristoufek, 2015). Moreover, Chen et al. (2020) chose to include gold spot

price, Baidu and Google search volume for the word “bitcoin”, and multiple bitcoin net-

work characteristics after analyzing feature importance using the Boruta package. Boruta

works similarly to a random forest classifier and can be used to evaluate which attributes

are important (Kursa, Rudnicki, et al., 2010). In brief, a large variety of features might

carry predictive value for bitcoin prices but some features might not be applicable at

every frequency. For example, usually mining difficulty and hash rate are only available

at a daily frequency. Taking the modelling decisions into account when selecting features

might therefore prove essential.

Existing literature exhibits examples of different models that were fitted to predict

bitcoin prices. As mentioned the frequency of trading affects the set of features which can

be used, it seems that a similar effect is present regarding the choice for which model to

use. Statistical methods like logistic regression, linear discriminant analysis, or generalized

linear models outperform machine learning strategies when using data at a daily frequency

according to the results of both Madan et al. (2015) and Chen et al. (2020). It might

therefore be unsurprising that Sebastião and Godinho (2021) obtained an accuracy of 0.57

when fitting a random forest to daily data whereas the accuracy of statistical methods in

Chen et al. (2020) was equal to 0.65 on average. At a 5 minute frequency, however, Chen

et al. (2020) showed that machine learning techniques outperformed statistical methods,

classifying price movements correctly in 62.2% of cases versus 53% for statistical methods.

In light of these results, it seems reasonable to only consider machine learning strategies

when constructing a high-frequency trading strategy.

Even when excluding statistical methods, many machine learning strategies to choose

from remain. Most authors seem to opt for either a random forest or a recurrent neural

network like a long short-term memory network. Other viable options might be support

vector machines (Sebastião & Godinho, 2021) or gradient boosting classifiers (Chen et al.,

2020). Vo and Yost-Bremm (2020) opted to fit a random forest on price data and some

technical indicators to classify price movements, i.e. prices go up or go down during the

next period. Their random forest was trained on multiple frequencies, from 1 minute up

to 90 days. Their classifier achieved the highest F1 score when predicting price movements

at a 15-minute frequency. Moreover, this classifier based on a random forest outperformed

a multilayer perceptron network when considering F1 metrics. This is not very surprising

as multilayer perceptron (MLP) networks seem generally regarded as ill-adapted for time

series. It could therefore be more appropriate to test against more sophisticated neural

networks, recurrent neural networks would probably be better suited for time series data.

An example of such a more sophisticated recurrent neural network is employed by Chen
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et al. (2020) who built a classifier by fitting a long short-term memory network for 5-

minute bitcoin price data. Although this classifier outperformed a random forest fitted

to the same data, it performed worse than the random forest classifier as in Vo and Yost-

Bremm (2020). At the same 5-minute frequency Vo and Yost-Bremm (2020) managed

to achieve an F1-score of 0.902 in contrast to the F1-score of 0.776 as achieved by the

LSTM network in Chen et al. (2020). This difference might be due to the increased

efficiency of the bitcoin market as Chen et al. (2020) use data from 2017-2018 whereas

Vo and Yost-Bremm (2020) use data from 2015 up to and including 2017. This increased

efficiency might also be inferred from the returns as specified by Vo and Yost-Bremm

(2020), interestingly the returns yielded by their classifier decreased substantially since

2015. Annual returns for the random forest classifier were equal to 932%, 47%, and 205%

for 2015, 2016, and 2017 respectively. All in all, it is hard to pick the “best method”,

it seems however that results of the past do not automatically generalize to the future,

possibly due to a more efficient market.

A changing bitcoin market might mean that interest should go out to the application of

machine learning strategies to an efficient market. Nelson et al. (2017) do just that by em-

ploying an LSTM network to predict the prices of exchange-traded funds on the Brazilian

Bovespa (nowadays: B3) exchange. Nelson et al. (2017) fitted an LSTM network to 15-

minute candlestick (OHLC) data and technical indicators derived from these candlesticks.

Surprisingly even in this presumably highly efficient market, an accuracy was achieved of

up to 55.9%. Moreover, trading based on this classification yielded relatively high returns

per trade compared to the included baselines, which suggests that their strategy might

have remained profitable, even when including trading costs. As predictions and trades

are done at a 15-minute frequency trading costs accumulate rather quickly if returns per

trade are insufficient. In an attempt to overcome the hurdle that transaction costs pose

Resta (2006) devised a model that aimed to trade only on strong signals. This model thus

had the ability to do nothing, in contrast to the strategy utilized by Nelson et al. (2017)

which took either a long or a short position in every period. Resta (2006) fitted a neural

network to the OHLCV data for the NASDAQ index at a 30-minute frequency. Evaluation

on the test set showed that the constructed strategy remained profitable for transaction

costs of up to 0.02%. Transaction costs on the cryptocurrency market are usually a mag-

nitude of order larger. Transactions costs of 0.2% for opening and subsequently closing a

position are not uncommon (Binance, 2021). Sebastião and Godinho (2021) go as far as

including transaction fees of 0.5% in their calculations. Just like Resta (2006), they built

a strategy in which trades take place only in the presence of strong signals. To this end,

they constructed an ensemble model which combined a linear model, a random forest,
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and a support vector machine. This ensemble only made a buy decision if each individual

method predicted the same upwards price movement (short-selling was excluded). This

differs from Resta (2006) who defined the problem as a three-class classification: prices go

up, nothing happens, or prices go down. Sebastião and Godinho (2021) achieved an an-

nualized return of 1.62% when applying their best performing ensemble on recent bitcoin

price data, this was also the only ensemble of the three that managed to yield a posi-

tive return. Note however that the ensembles were evaluated in a down-trending market

as the buy and hold strategy resulted in a return of -54.9%, the restriction of no short

selling was therefore especially harsh. When applying the same ensemble on the market

for ethereum however they achieved an annualized return of 14.35% after subtraction of

transaction fees. Overall, these results suggest that even if the bitcoin market has be-

come more efficient positive returns could still be realised if transaction costs remain low

enough.

The large effect that the inclusion of trading fees has on the profitability of a trad-

ing strategy emphasises the need for a solid evaluation framework. Precision, accuracy,

and recall statistics based on a confusion matrix give insight into the statistical side of

performance. However, these statistics don’t take the magnitude of price movements into

account. Improving hereupon could be done by including cumulative returns as done by

Sebastião and Godinho (2021) for example. Using another strategy as a baseline to com-

pare the strategy of interest against might be considered the next step up. The Sharpe

ratio as included by Vo and Yost-Bremm (2020) is an example of this, it measures if

and how reliably a strategy outperforms risk-free assets like bonds. One might suggest

however that in a market that grows as rapidly as the cryptocurrency market has done re-

cently, the comparison with the risk-free rate yields a rather optimistic result. To provide

a more reliable evaluation Nelson et al. (2017) test their obtained results against multiple

baselines. The performance of their LSTM network is tested against two other trading

strategies based on machine learning methods, namely a random forest and a multilayer

perceptron (MLP) neural network. Besides, they also test their preferred strategy against

more simple investment strategies: a buy and hold strategy, a naive forecast (if prices went

up last period they will go up again), and a pseudo-random strategy (prediction based

on class distribution). By extensively comparing the performance of their LSTM network

against these alternatives they managed to make their results better interpretable. Due

to the vanishingly small signal-to-noise ratio in stock data such extensive comparisons are

necessary to make substantiated claims about the performance of a strategy.

The cited literature will be used when devising a design for this research. To this end,

ensembles similar to the ensembles of Sebastião and Godinho (2021) will be employed.
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However, these ensembles will be built from different methods. As Vo and Yost-Bremm

(2020) achieved a low classification error using random forests, these will be part of the

ensemble. Furthermore, also an LSTM network will be included, as done by Chen et al.

(2020), among others. Using these methods an ensemble is constructed to classify price

movements in a way similar to Resta (2006). However, unlike Resta (2006), only long

positions will be considered, much like Sebastião and Godinho (2021). The research design

will be expanded upon further in the following section.

3 Research Design

3.1 Data and preprocessing

Tick by tick price data for bitcoin from 2014 until 2021 is obtained from the Kraken

exchange. Kraken is a well-established exchange that has been online since 2011. Only

one exchange is considered as Vo and Yost-Bremm (2020) show that ML methods are

tolerant to differences between exchanges. As stated before, interest goes out to the

profitability of constructed strategies in recent times due to the possibly increasingly

efficient bitcoin market. Consequently, a subset of the data is made containing only the

two most recent years, 2019-2021. Of these two years, the first one will be used as a

validation set whereas the last year will be used for final evaluation. The bitcoin price

development during the period from 2019 to 2021 is plotted in Figure 1.

Figure 1: 15-minute closing prices
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Due to the use of a rolling window, not the entire last year is used for testing: the first
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180 days of the data will only be used as the training set for the first iterations of the

rolling window. This is illustrated in Figure 2.

Figure 2: First iteration of rolling window for evaluation
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The tick by tick data is aggregated into Open-High-Low-Close-Volume (OHLCV) data

at a 15-minute frequency. Returns are then derived as follows:

rt =
pt − pt−1

pt−1

,

with pt, the closing price at time t. A classifier is constructed which attempts to predict

the direction of price movements and whether price movements are “large”. For this

purpose, the target variable is derived from the individual returns in a way similar to

Resta (2006).

yt =

1 if rt > θ

0 if rt ≤ θ
.

Here θ signifies a threshold value subject to θ ∈ {0, 0.1, 0.2}. The inclusion of such a

threshold is done in the hope that trades will only occur when price movements exceed the

cost incurred from trading fees. Note that θ only affects the target variable on which the

methods are trained. Here, τ is used for the level of transaction cost during profitability

calculations. For example, the ensembles trained using θ = 0 are evaluated for multiple

values of τ . This approach allows conclusions regarding the profitability of the zero
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threshold ensemble under various levels of transaction costs.

Multiple technical indicators are included as features, these technical indicators are

derived from the OHLCV data by making use of the Pandas-TA package. Since Mc-

Nally et al. (2018) identified the 5 and 10-day Simple Moving Average (SMA) as the

most important features in predicting bitcoin prices, a simple moving average is included.

Moreover, as Vo and Yost-Bremm (2020) constructed a profitable trading strategy by

including the Relative Strength Index (RSI), stochastic oscillator, Williams %R, Moving

Average Convergence Divergence (MACD), and On Balance Volume (OBV), these indi-

cators are utilized here as well. Vo and Yost-Bremm (2020) mention that their classifier

performs well under the default settings of these indicators, therefore, no further tweaking

is done to indicator settings. Similar to Chen et al. (2020) gold spot price and trading

volume is included. Lastly, all features are standardized as follows:

Ztj =
xtj − x̄j
sj

, t ∈ [1, n], j ∈ [1, k],

where Ztj is the standard score for entry xtj, feature j at time t. x̄j and sj are the sample

mean and deviation for feature j respectively. n is the observation count and k the feature

count. All this is as implemented by the “StandardScaler” in scikit-learn.

3.2 Machine learning methods

First Long Short-Term Memory (LSTM) networks are discussed, then random forests.

Lastly, attention is payed to the topic of combining these two methods in an ensemble.

LSTM networks are a type of Recurrent Neural Network (RNN) typically used when

analyzing sequence data. Moreover, an LSTM network consists of a chained series of

gated cells. A chain of three gated cells is illustrated in Figure 3.

Figure 3: LSTM cells, retrieved from Olah (2015), section “LSTM networks”
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Each cell consists of a forget gate, a memory gate, and an output gate. The forget gate

is trained to select which parts of the previous cell state are forgotten, and which will be

put forward by remaining in the cell state. As stated by Olah (2015), the current input

and previous cell output are put through a sigmoid function, which outputs a number

ranging from 0 to 1 for each value in the cell state. A zero means disregard this value

in the cell state completely, a 1 means that the value is propagated forward through the

cell state, unchanged. The input gate enables the network to add to the current cell state

which is then used in future periods. Lastly, the output gate combines current cell inputs

and cell state to generate an output, in this case, a class. This summarizes the article of

Olah (2015) which explains the inner workings of the LSTM cells in more detail.

Keras is used to implement the LSTM network, which is a deep learning framework

running on top of Google’s TensorFlow. Using this toolkit the LSTM network is compiled

with 2 hidden layers, each containing 36 hidden units. A dropout rate of 0.2 is used, which

means that 20% of inputs are randomly selected and set equal to 0. Furthermore, the

LSTM is trained on samples that contain 96 timesteps, therefore, each sample contains all

inputs of the 24 hours leading up to the newest observation in the training set. Lastly, at

each iteration of the sliding window, the network is trained over 10 epochs, as this resulted

in the lowest validation loss, see Figure 11 through 13. The dropout rate, amount of

timesteps, and number of hidden units are selected by trial and error over a small subset

of the training data. A grid search over the full training set, or a full grid search on this

subset even, was computationally infeasible. In light of these computational limitations,

the default activation functions were used, namely a tanh function in the output gate

and a sigmoid function in the other gates. Using these default activations allowed the

Keras package to train the network using a cuDNN (CUDA Deep Neural Network library)

implementation, utilizing the GPU and drastically reducing training times. Lastly, the

output of the LSTM layers are put through a sigmoid function, which yields a probabilistic

value to be used for classification.

Random forests are an ensemble learning method based on decision trees. When fitting

an RF many decision trees are built on various bootstrapped samples using various random

sets of features. Once trained, data is run through all decision trees, after which results

are averaged to obtain a classification. Due to this innate randomization, random forests

are less prone to overfitting, as described more in-depth by Breiman (2001). Various

values for the number of trees are considered. According to Breiman (2001), changes to

this parameter may have a noticeable effect on results. To utilize random forests the

implementation of scikit-learn is used.

Following the work of Sebastião and Godinho (2021) an ensemble is constructed by
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combining an LSTM network with a random forest. Both are fitted on the same data,

predicting whether there will be a large price increase and trading should occur, or not.

Note that both the LSTM network as the random forest output a value between 0 and 1.

the prediction of the ensemble is then given as below

ŷt,1 =

1 if ŷrft > 0.5 ∧ ŷlstmt > 0.5

0 else
.

As both the LSTM network and the random forest give probabilistic outputs, an ensemble

can also be formed by linearly combining predictions as follows:

ŷt,2 =

1 if α · ŷlstmt + (1− α) · ŷrft > 0.5

0 if α · ŷlstmt + (1− α) · ŷrft ≤ 0.5
.

Where the value of α is set to maximize profit for τ = 0.08%, using the validation set.

A rolling window is used in which the LSTM network and random forest are repeat-

edly trained on a window that slides forward. Ideally, an approach as in Nelson et al.

(2017) is adopted such that the network is trained daily. However, due to computational

restrictions, the network and random forest are trained every 10 days here. The decision

of how much historic data to include is more difficult. Hochreiter and Schmidhuber (1997)

suggest that LSTM can pick up on long time lags of signals, LSTM might therefore be

suited for the inclusion of more historic data. Since LSTM networks were designed with

time dependencies in mind it seems reasonable to assume that RF might not be able to

pick up on these long lags of signals as well. Therefore multiple training period lengths

are considered, namely 30, 90 and, 180 days. The sliding window then consists out of

respectively 30, 90, or 180 days of training followed by testing on 10 days of unseen data.

After training and testing is completed, the sliding window moves ahead 10 days for the

next iteration.
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3.3 Evaluation

Evaluation of classifier performance will proceed by including accuracy, precision, recall,

and F1 score. These are calculated as follows:

precision =
TP

TP + FP
,

recall =
TP

TP + FN
,

accuracy =
TP + TN

n
,

F1 = 2 ∗ precision ∗ recall

precision + recall
,

where n is the size of the test set, TP , FP , and FN denote the true positive count, false-

positive count, and false-negative count respectively. Cumulative profits will be included

and calculated as follows:

Rtot =
m∏
t=1

(1 + ŷt(rt − τ)) ,

with ŷt the binary prediction at time t, rt the realised return at time t, and τ the trans-

action fee. ŷt takes on either the value 1 or 0, implying a buy or don’t buy decision,

respectively. The product of the prediction and the transaction fee subtracted from the

realised return ensures that returns are positive only if a buy decision is made when re-

turns exceed transaction costs. Besides the strategy based on the ensemble, investment

strategies to compare against are included in a way similar to Nelson et al. (2017). To

this end, a buy and hold strategy is utilized for which holds that:

Rtot =
pclosem − pclose1

pclose1

,

and a naive forecast is made for which predictions are given by

ŷnaivet = yt−1.

The random forest and LSTM network trained using θ = 0 are also used as a baseline.

Besides the comparisons described above we test the following hypotheses to deter-

mine whether the Sharpe ratio’s (SR) of the strategies based on ensemble predictions are
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significantly higher than the Sharpe ratio of the buy and hold strategy:

H0 : SRens = SRb&h

Ha : SRens > SRb&h,

where the (annualized) Sharpe ratio is given as in Sebastião and Godinho (2021):

SR =
µ

σ

√
365.

With µ the daily mean return and σ the standard deviation of said returns. These hy-

potheses are tested by making use of the following statistic and its asymptotic distribution

under the null hypothesis as described by Bailey and Lopez de Prado (2012):

(ŜRens − ŜRb&h)
a−→ N

(
0, σ2

ens + σ2
b&h

)
,

with

σ =

√
1 + 1

2
SR2 − γ3SR + γ4−3

4
SR2

m
,

where SR is the Sharpe ratio, m the size of the test set, γ3 the skewness of daily returns,

and γ4 the kurtosis of daily returns.

By carrying out the research as specified in this section, the body of knowledge is

expanded in a few ways. This research mainly extends upon the work of Sebastião and

Godinho (2021) by applying an ensemble built from different machine learning methods

to 15-minute data, instead of low-frequency (daily) data. Current research concerning

cryptocurrency trading seems to focus on predicting price movements such that trading

occurs in every period. This ensemble might be used in the construction of sparse trading

strategies as a threshold is implemented, similar to Resta, 2006. Lastly, an attempt is

made to provide handles to (institutional) investors looking to enter the cryptocurrency

market by applying the constructed ensemble in a realistic and current setting. This way,

a strategy that performs well during backtesting might be used for live trading.

Results

All reported results are obtained using a sliding window containing 180 days of training

data, unless stated otherwise. The methods using 90 or 30 days of historical data per-
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formed similarly or inferior to methods using 180 days on the validation set, as can be

observed in the appendix. Some further results using 90 or 30 days of historical data are

included in the appendix. The random forest was generated on the validation set using

50, 100, 200, 500, and 1000 trees. Changing the amount of trees did not seem to affect

performance much. Furthermore, as Vo and Yost-Bremm (2020) seemed to obtain the

best results using 100 trees, all results here are obtained using 100 trees. Some results

regarding the choice for the number of trees are reported in the appendix.

The ensemble constructed using a weighted average of the RF and LSTM predictions

only outperformed the individual methods for θ = 0.2. At the other thresholds, profit

was highest when α = 1, resulting in a pure LSTM. Therefore, “Weighted avg ensemble”,

refers to the ensemble trained using θ = 0.2 and constructed using α = 0.58. See Figure

8 through 10 for these results.

First statistics regarding the classification performance will be reviewed. Then, the

profitability of the constructed strategies is considered. Lastly, some statistics are reported

regarding financial performance.

Tables 1 through 3 provide classification reports for the ensemble, the individual meth-

ods, and the naive forecast for the three thresholds. Increasing the threshold leads to

imbalanced datasets. Therefore, the accuracy is less informative for the methods trained

using a non-zero threshold, of which the classification reports are shown in Table 2 and

Table 3. To evaluate performance based on these classification results, the context of the

problem needs to be considered. False negatives mean that no buy decision is made, even

though it should have. The cost incurred as a consequence of this mistake is zero, not

buying does not carry a cost. On the other hand, false positives are wrongly made buy

decisions. These mistakes are very costly as a buy decision is made while returns might be

negative, or insufficient to offset transaction costs. Therefore, the key metrics to consider

are precision for the positive class and recall for the negative class. High precision for

the positive class means that in periods for which a price increase is predicted, this price

increase is likely to materialize. Similarly, a high recall for the negative class indicates a

low number of wrongly predicted buy decisions, compared to the support of the negative

class. Using the table, comparisons can be drawn about the ensemble trained using a zero

threshold and the individual methods used in the construction of this ensemble. For all

three thresholds the ensemble outperforms the individual methods, in terms of precision.

The recall for the negative class is also higher for all ensembles. As expected the ensem-

bles achieve lower recall for the positive class, indicative of more false negatives. Thus,

the ensembles are able to predict a price increase more precisely, even though picking up

on less of the price increases compared to the individual methods.

Caspar Hentenaar page 15 of 31



All methods outperform the naive forecast on the test set, taking into account both

accuracy and positive class precision.

Table 1: Classification reports, θ = 0

Method class precision recall f1-score observation count accuracy

Ensemble 0 0.51 0.73 0.60 8744 0.519
1 0.55 0.32 0.40 9112

LSTM 0 0.52 0.52 0.52 8744 0.534
1 0.54 0.55 0.54 9112

RF 0 0.51 0.57 0.54 8744 0.518
1 0.53 0.47 0.50 9112

Naive forecast 0 0.47 0.47 0.47 8744 0.479
1 0.49 0.49 0.49 9112

Table 2: Classification reports, θ = 0.1

Method class precision recall f1-score observation count accuracy

Ensemble 0 0.71 0.99 0.83 12621 0.71
1 0.57 0.05 0.08 5235

LSTM 0 0.72 0.97 0.82 12621 0.709
1 0.52 0.08 0.14 5235

RF 0 0.72 0.89 0.80 12621 0.681
1 0.40 0.17 0.24 5235

Naive forecast 0 0.71 0.71 0.71 12621 0.597
1 0.31 0.31 0.31 5235
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Table 3: Classification reports, θ = 0.2

Method class precision recall f1-score observation count accuracy

Ensemble 0 0.84 1.00 0.91 14998 0.84
1 0.50 0.02 0.04 2858

Weighted avg ensemble 0 0.84 0.99 0.91 14998 0.84
1 0.50 0.04 0.08 2858

LSTM 0 0.84 0.99 0.91 14998 0.839
1 0.47 0.04 0.07 2858

RF 0 0.85 0.97 0.91 14998 0.831
1 0.38 0.09 0.15 2858

Naive forecast 0 0.85 0.72 0.78 14998 0.66
1 0.19 0.35 0.25 2858

From Table 4 it can be seen that as the threshold during training (θ) increases, the

time in the market drastically reduces. Furthermore, the LSTM network takes a long

position less often than the random forest for θ > 0. A figure comparing the profitability

of these individual methods is included in the appendix, see Figure 7.

The predictions of the ensembles (excluding the weighted average ensemble) are given

by the intersection between the predictions of the LSTM network and the predictions of

the RF. Naturally, the ensembles enter the market less than the individual methods for

every value of θ.

Table 4: % of time in the market

θ Ensemble LSTM RF

0 29.56% 48.58% 44.88%
0.1 2.48% 4.31% 12.59%
0.2 0.73% 1.19% 3.87%

In Table 5 the accumulated value on a hypothetical investment of 100$ is displayed. The

buy and hold strategy outperforms all other methods, even when assuming transaction

fees to be zero. Furthermore, if transaction fees are assumed to be zero, the ensembles

perform worse than the individual methods. When transaction costs are positive the

ensembles outperform the individual methods. Furthermore, the ensemble trained using

θ = 0.1 remains profitable for the highest level of transaction costs. The naive forecast

performs worst, only exceeding profits of some ensembles when trading fees are assumed

to be zero.
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Table 5: Profit under transaction costs

Method tc=0 tc=0.05% tc=0.1%

Ensemble, θ = 0 213.20 15.22 1.08
Ensemble, θ = 0.1 169.29 135.68 108.73
Ensemble, θ = 0.2 110.33 103.33 96.78
Weighted avg ensemble 127.75 112.52 99.11
LSTM, θ = 0 252.25 3.30 0.04
RF, θ = 0 257.57 4.68 0.08
Naive forecast 157.40 1.65 0.02
Buy and hold 289.68 - -

Below, in Figure 4, the accumulated value over the test set of a 100$ investment is

plotted against transaction costs (τ). Besides the ensembles, the LSTM network without

threshold is included as a baseline. The horizontal dotted line indicates the starting

value, 100 dollars. Once again, it is apparent that the ensemble trained using θ = 0.1

remains profitable for the highest level of transaction costs. The methods trained using a

zero threshold quickly return a loss as transaction costs exceed 0.01%. Note that realistic

roundtrip transaction fees are 0.2% on the Kraken exchange and at least 0.08% on Binance.

At transaction fees of 0.08% only the ensemble trained using θ = 0.1 is profitable, none

of the methods are profitable for transaction fees of 0.2%.

Figure 4: Value accumulated versus transaction fees
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Table 6 contains performance statistics calculated under the assumption of no trans-
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action fees. The maximum drawdown is the largest difference between a peak and sub-

sequent through, conveying a sense of tail risk. The ensembles have a smaller maximum

drawdown than the other methods. Furthermore, the ensembles attain a higher mean

profit per trade compared to the alternatives. The annualized Sharpe ratio relates the

return of a strategy to its volatility. In this regard, the ensemble using θ = 0.1 performs

best, achieving a Sharpe ratio of 7.5. Volatility is included as the standard deviation of

daily percentage returns.

The hypotheses as stated under the Research Design section are tested:

H0 : SR = SRb&h

Ha : SR > SRb&h,

The buy and hold strategy is taken as baseline. The Sharpe ratio’s of the ensembles trained

using θ = 0 or θ = 0.1 exceed that of the buy and hold strategy at a 1% confidence level,

just like the LSTM based strategy using θ = 0.1. Furthermore, the Sharpe ratio of the

random forest trading strategy using θ = 0, exceeds that of the buy and hold at a 5%

confidence level.

Table 6: Performance statistics

Method Max. Drawdown Mean profit per trade Sharpe Ratio Std. deviation (%)

Ensemble, θ = 0 -9.0% 0.0148% 5.5*** 1.45
Ensemble, θ = 0.1 -7.0% 0.1209% 7.5*** 0.73
Ensemble, θ = 0.2 -8.0% 0.078% 2.5 0.40
Weighted avg ensemble -10.0% 0.0994% 2.9 0.88
LSTM, θ = 0 -16.0% 0.0112% 5.3*** 1.87
RF, θ = 0 -12.0% 0.0122% 5.4** 1.88
Naive forecast -22.0% 0.0054% 2.4 2.10
Buy and hold -20.0% 0.0064% 4.2 (baseline) 2.80

(∗) p=0.1, (∗∗) p=0.05, (∗∗∗) p=0.01

Figure 5 shows the cumulative returns of the ensembles as well as the buy and hold

strategy, assuming transaction fees to be 0. The ensembles trained using positive values

of θ seem largely unaffected by price fluctuations exhibited in the buy and hold strategy.

Their eventual return is lower, however.
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Figure 5: Cumulative returns using various thresholds

In Figure 6 feature importances are given, calculated by the mean impurity decrease

over all trees of the random forest. The standard deviation of the impurity decrease over

all trees is illustrated by the error bars. Most indicators attain a higher feature importance

compared to the price data of the current period. Trade volume in the current period also

seems more important than the candlestick data. Gold closing price and trade volume

provide a significant, positive, mean decrease in impurity, although being less influential

than most indicators.

Figure 6: Feature importance calculated by mean decrease in impurity

�'
�% �!�

 
�&
,
�#&
)�

�&
#+$

�
��
�

��
��
�"

��
��
��

��
��
��
�
��
��

��
��
 

��
��
)
�

�

��
��
�

Δ��
#&)
�

�&
#��
�#&
)�

�&
#��
�&
#+$

�
����

����

����

����

����

����

���	

���


����

�
��

%�
��

�(
��

)�
�!%
�!$

'+
(!*
-

Caspar Hentenaar page 20 of 31



4 Conclusion and Discussion

A random forest and an LSTM network were combined in an ensemble which took a long

position only if both methods agreed to do so. Such ensembles yielded worse returns

under the assumption of no trading fees, upon inclusion of said trading fees the ensem-

bles outperformed the individual methods. Furthermore, the ensembles exhibited lower

volatility than the individual methods. Besides combining methods to form an ensemble,

reducing the number of trades made, a threshold was introduced. Using this threshold

the methods were trained to make a buy decision only if the price increase was sufficiently

large, further reducing the amount of trading done. This proved to be a valuable tool for

increasing the average profit per trade. The far reduced number of trades in the strategies

which combined the ensemble with such a threshold did result in lower returns. Under

realistic transaction costs only the ensemble trained using θ = 0.1 yields a slight profit.

However, this ensemble is still outperformed by the buy and hold strategy.

These results are largely in line with the findings of Sebastião and Godinho (2021), who

found that most ensembles generated a loss when used for bitcoin trading. On the other

hand, Vo and Yost-Bremm (2020) constructed an extremely profitable strategy using just

a random forest. Their classifier achieved an F1 score of 0.901 on historic data. These

results could not be reproduced while using recent data. This could be indicative of a

now more developed, more efficient bitcoin market.

Some limitations of the current research should be noted. All strategies were tested

from 29/6/2020 until 1/1/2021, in this period the bitcoin price increased rather rapidly

with only a few dips. As strategies were only able to take a long position this growth

might have positively inflated results, as seen from the naive forecast generating a positive

return. However, the high mean return and low maximum drawdown of the ensembles

show that the predictions are better than random. Moreover, the results show that even

in periods of market downturn the ensembles do not incur large losses.

Another limitation is the mere use of trial and error for setting the LSTM network

parameters, instead of a grid search over all parameters. The ensembles may therefore

still perform sub-optimal. Since training an LSTM network using 180 days of historical

data already took several hours, a grid search was deemed infeasible. More extensive

parameter optimization could result in performance gains.

The results allow for future research in various directions. A natural extension could be

the inclusion of more individual methods in the construction of ensembles. Other neural

networks come to mind, like the LSTM fully convolutional network (LSTM-FCN), shown

to perform outstandingly on time series classification tasks (Karim et al., 2019). Another
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angle might be extending the classification task by allowing short selling, extending the

problem to a 3-class classification. Furthermore, if more computational power can be

acquired, one could consider including more historical data and performing a grid search

for the LSTM parameters. Lastly, as the main issue of the strategies posed here seems to

be the accumulation of transaction costs, it might be interesting to lower the frequency

of trading. As trading is done at lower frequencies, transaction costs pose less of an issue.

The results have some practical implications. Bitcoin trading, using ensembles of

random forests and LSTM networks, seems barely profitable for individuals, as the trans-

action fees often exceed the average profit per trade. Such an ensemble might still be

viable for institutional investors, as trading in large volumes tends to lower transaction

fees, due to tiered pricing (Binance, 2021). The average profit per trade may therefore

exceed transaction fees for corporate investors.

For risk-averse corporations, an approach as employed here might be useful. The

ensembles seemed to perform consistently even when the market fluctuated wildly, as

indicated by the maximum drawdown of 7% for one of these ensembles.

Regarding the research question: “How can random forests and LSTM networks be

used and combined to construct a profitable sparse trading strategy for cryptocurrency

when facing transaction costs”. The findings in this paper suggest that it is possible to

create a slightly profitable trading strategy while accounting for a realistic, although low

level of transaction fees. In practice however, trading at this low level of transaction

fees is only possible for corporations that are able to trade large volumes. Improvements

are needed to make automated trading using LSTM-RF ensembles viable for individuals.

Such improvements can possibly be made by including more historical data, using a larger

variety of machine learning methods in the construction of the ensembles, or further

tweaking the LSTM and RF used here.
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5 Appendix

Table 7: LSTM classification reports for different rolling window sizes

Method class precision recall f1-score observation count accuracy

180 days, θ = 0 0 0.52 0.54 0.53 8744 0.529
1 0.54 0.51 0.53 9112

90 days, θ = 0 0 0.51 0.53 0.52 8744 0.522
1 0.53 0.52 0.53 9112

30 days, θ = 0 0 0.50 0.54 0.52 8744 0.514
1 0.53 0.49 0.50 9112

180 days, θ = 0.1 0 0.72 0.97 0.82 12621 0.709
1 0.52 0.08 0.13 5235

90 days, θ = 0.1 0 0.72 0.95 0.82 12621 0.698
1 0.43 0.09 0.14 5235

30 days, θ = 0.1 0 0.71 0.96 0.82 12621 0.696
1 0.40 0.07 0.12 5235

180 days, θ = 0.2 0 0.84 0.99 0.91 14998 0.839
1 0.47 0.04 0.07 2858

90 days, θ = 0.2 0 0.84 0.99 0.91 14998 0.837
1 0.41 0.05 0.08 2858

30 days, θ = 0.2 0 0.84 0.99 0.91 14998 0.836
1 0.32 0.02 0.04 2858
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Table 8: RF classification reports for different rolling window sizes

Method class precision recall f1-score observation count accuracy

180 days, θ = 0 0 0.51 0.57 0.54 8744 0.518
1 0.53 0.47 0.50 9112

90 days, θ = 0 0 0.51 0.55 0.53 8744 0.522
1 0.53 0.50 0.51 9112

30 days, θ = 0 0 0.50 0.58 0.54 8744 0.511
1 0.52 0.44 0.48 9112

180 days, θ = 0.1 0 0.72 0.89 0.80 12621 0.681
1 0.40 0.17 0.24 5235

90 days, θ = 0.1 0 0.72 0.86 0.79 12621 0.668
1 0.38 0.20 0.26 5235

30 days, θ = 0.1 0 0.72 0.83 0.77 12621 0.655
1 0.36 0.23 0.28 5235

180 days, θ = 0.2 0 0.85 0.97 0.91 14998 0.831
1 0.38 0.09 0.15 2858

90 days, θ = 0.2 0 0.85 0.96 0.90 14998 0.822
1 0.34 0.11 0.17 2858

30 days, θ = 0.2 0 0.85 0.93 0.89 14998 0.803
1 0.29 0.16 0.21 2858

Table 9: Profit of ensembles by rolling window size

Method tc=0 tc=0.05% tc=0.1%

180 days, θ = 0 213.20 15.22 1.08
90 days, θ = 0 226.19 14.64 0.95
30 days, θ = 0 181.81 14.73 1.19

180 days, θ = 0.1 169.29 135.68 108.73
90 days, θ = 0.1 136.68 102.12 76.30
30 days, θ = 0.1 117.16 93.74 75.00

180 days, θ = 0.2 110.33 103.33 96.78
90 days, θ = 0.2 117.85 107.50 98.05
30 days, θ = 0.2 98.74 93.13 87.83
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Table 10: Performance statistics for ensembles by rolling window size

Method Max. Drawdown Mean profit per trade Sharpe Ratio Std. deviation (%)

180 days, θ = 0 -9.0% 0.0148% 5.5*** 1.45
90 days, θ = 0 -11.0% 0.0154% 6.5*** 1.33
30 days, θ = 0 -14.0% 0.0123% 4.3 1.49

180 days, θ = 0.1 -7.0% 0.1209% 7.5*** 0.73
90 days, θ = 0.1 -8.0% 0.0552% 4.3 0.76
30 days, θ = 0.1 -9.0% 0.037% 2.5 0.68

180 days, θ = 0.2 -8.0% 0.078% 2.5 0.40
90 days, θ = 0.2 -8.0% 0.0925% 2.4 0.72
30 days, θ = 0.2 -10.0% -0.0085% -0.2 0.59

Table 11: Classification results of RF with different # of trees, on validation set

Method class precision recall f1-score observation count accuracy

50 trees 0 0.53 0.50 0.51 9023 0.518
1 0.51 0.53 0.52 8737

100 trees 0 0.53 0.48 0.50 9023 0.52
1 0.51 0.56 0.53 8737

200 trees 0 0.53 0.47 0.50 9023 0.522
1 0.51 0.58 0.54 8737

500 trees 0 0.53 0.45 0.49 9023 0.52
1 0.51 0.59 0.55 8737

1000 trees 0 0.54 0.45 0.49 9023 0.524
1 0.51 0.60 0.55 8737

Table 12: Profitability of RF with different # of trees, on validation set

Method tc=0 tc=0.01% tc=0.05%

50 trees 101.43 40.61 1.04
100 trees 107.67 41.26 0.89
200 trees 109.54 40.76 0.78
500 trees 94.30 34.12 0.58
1000 trees 116.43 41.78 0.69
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Figure 7: Value accumulated versus transaction fees for RF and LSTM, 180 days of training
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Figure 8: Accumulated value of 100 dollars, invested over training set, θ = 0, τ = 0.08%
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Figure 9: Accumulated value of 100 dollars, invested over training set, θ = 0.1, τ = 0.08%
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Figure 10: Accumulated value of 100 dollars, invested training set, θ = 0.2, τ = 0.08%
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Figure 11: Loss and validation loss versus epoch, θ = 0
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Figure 12: Loss and validation loss versus epoch, θ = 0.1
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Figure 13: Loss and validation loss versus epoch, θ = 0.2
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