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Abstract

While bitcoin prices are on the rise, the bitcoin market is as volatile as ever.
These wildly fluctuating prices might exhibit patterns to be detected using machine
learning. In hopes of finding and profiting off such patterns, a Long Short-Term
Memory (LSTM) network and a random forest are trained on recent, high-frequency,
price data. Evaluating these predictions showed promise that the bitcoin market
is indeed predictable to some degree. Combining the predictions of the random
forest and LSTM network in a so-called ensemble, made trading based on these
predictions more profitable when accounting for transaction fees. Introducing a
threshold, which should be exceeded for trading to occur, further improved the
profitability under transaction fees. However, at a realistic level of transaction fees,
the ensembles were barely profitable and were outperformed by the buy and hold

strategy.
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1 Introduction

The inception of bitcoin came by the whitepaper of Nakamoto, 2009, a pseudonym for
an author or group of authors who remain anonymous to this day. This paper laid the
fundamentals for bitcoin as a digital, decentralized ledger and with that the fundamentals
for all cryptocurrencies after it. The interest for bitcoin seems to be steadily increasing
among the general public, as is implied by the increasing amount of search queries for the
word “bitcoin”, especially during price rallies (Google, 2021)). Similarly, there seems to be
an increase in academic attention as can be inferred from the work of Fang et al. (2020).
They showed that over 85% of papers regarding cryptocurrency trading have been written
since 2018.

The largest difference between bitcoin and everyday currencies might be the decen-
tralized nature of bitcoin. Monetary policy, fraud detection, and facilitating (digital)
payments are all tasks of a central authority, usually banks and governments in the case
of regular currencies. For bitcoin, monetary supply increases at a publicly known geo-
metrically decreasing pace (Browne, 2020). Fraud detection and prevention are replaced
by proof of work requiring fraudsters to do an infeasible amount of computational work.
Payments are verified by a decentralized network of “miners”, computers working to gen-
erate a specific hash. The decentralized nature of the cryptocurrency market implies that
there is no downtime, miners across the world are online 24/7, confirming transactions.
This is in stark contrast to the strictly regulated stock markets which open and close
during set times, only on weekdays.

Various aspects of bitcoin and bitcoin trading might make it an interesting subject of
study. As Fang et al. (2020) note, the frequently occurring bitcoin price bubbles are a
popular subject of interest. Furthermore, due to cryptocurrencies being a relatively new
phenomenon institutional investors seem mostly absent yet. This absence of institutional
investors could mean that there are or were large inefficiencies present in the cryptocur-
rency market. Past tense might be more appropriate as institutional investors are taking
ever more interest in cryptocurrencies. The recent acquirement of bitcoin by Tesla (Tesla,
2021) is a great example of such an institutional investor, taking an interest.

Fang et al. (2020) show that 38.1% of papers in their survey are focused on predicting
returns for cryptocurrencies. Note that predicting returns would only be possible in a
market that is not efficient. Such a possibly inefficient market sparks interest in the
application of machine learning when constructing a trading strategy. Machine learning
might be able to derive patterns present in the erratic price behaviour of bitcoin, possibly

non-perceptible to the human trader.
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With the rise of computational power came advancements in machine learning. Exem-
plary of this are Long Short-Term Memory (LSTM) networks which are neural networks
consisting of a sequence of cells. This structure seems to allow LSTM networks to better
detect patterns in sequences. These networks have seen a much-increased use in various
disciplines, for instance in the speech-to-text service: Google Voice (Beaufays, 2015). In
addition to estimating more complex models, it is nowadays feasible to utilize ensemble
learning. Ensemble learning combines machine learning methods by introducing voting
principles to obtain a single classifier. This way, model performance increases through
replication or combination of well-known methods, random forests for example are built
by a large number of decision trees fitted to bootstrapped samples.

Although research on cryptocurrency trading is becoming ever more extensive some
blanks are still observed in current literature. Bitcoin being the first and currently most
established cryptocurrency seems to imply that most attention and funds of (institutional)
investors are dedicated to bitcoin. Other crypto-currencies could therefore be promising
for a trading strategy based on machine learning, due to a possible lack of professionalism
in the market.

As mentioned, institutional investors seem to be entering the market for cryptocurren-
cies. As a consequence, the market might have become more efficient. If that is indeed the
case the efficient market hypothesis prescribes that all information would be encompassed
in the current price. Prediction of bitcoin prices using machine learning and trading based
on this prediction would then be rendered useless. To construct a strategy that could be
used for live trading, it would therefore be fruitful to consider recent data. This leads
to another gap to be filled in, a strategy can only be viable for use in live trading if
transaction fees are accounted for during backtesting. Leaving trading fees out of consid-
eration is especially unrealistic since profits on individual trades are usually small in HF'T.
As individual profits are small and trades are frequent, trading fees accumulate quickly.
Following this, more research could be devoted to the amount of trading to be done, or
more specifically, when not to trade. As the market becomes more efficient trading in
every period might not remain profitable due to a vanishing signal-to-noise ratio, forcing
traders towards sparse trading strategies in which trades don’t occur in every period but
only occasionally.

This piece will try to fill in the mentioned gaps and provide a current trading strategy
by answering the question: “How can random forests and LSTM networks be used and
combined to construct a profitable sparse trading strategy for cryptocurrency when facing
transaction costs?”

Answering this question might prove more important than ever as cryptocurrencies
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could provide an invaluable opportunity for further diversification of portfolios. To make
use of this opportunity, however, investors should be wary of the many artifacts present
in the cryptocurrency market. The price bubbles that seem to occur every so often, or the
occurrence of pump and dump schemes in which coins are bought and then quickly sold by
online communities. Hoping that the next person will buy their coins for a higher price.
The construction of a trading strategy that manages to remain profitable or even profit
from such artifacts might prove vital for investors looking to enter the cryptocurrency

market.

2 Theoretical Framework

When constructing a high-frequency trading strategy researchers and investors are faced
with a daunting amount of choices. Generally, three different types of decisions can be
distinguished: feature selection, modelling decisions, and the choice of evaluation frame-
work.

Regarding the decision of which features to use, as price movements are to be pre-
dicted, naturally, price data is included. Extending hereupon might lead to the inclusion
of technical indicators derived from this price data. Technical analysis has seen widespread
use by investors in constructing trading strategies even though the efficient market hy-
pothesis would suggest that results in the past carry no predictive value. Still, technical
indicators are often included when attempting to predict cryptocurrency prices. McNally
et al. (2018)) even identified the 5 and 10 day Simple Moving Average (SMA) as the most
important features in their analysis. Vo and Yost-Bremm (2020) also made use of techni-
cal indicators by including the following indicators when fitting a random forest classifier:
Relative Strength Index (RSI), stochastic oscillator, Williams %R, Moving Average Con-
vergence Divergence (MACD), and On Balance Volume (OBV). By using these indicators
in conjunction with price data they seemed able to consistently generate excess returns
compared to buy and hold strategies. These high returns were likely due to very accurate
predictions of price movements, as indicated by an F1 score of 97% for predicting whether
prices go up or down at a 15-minute frequency.

Many authors consider different features for inclusion in their models, such as gold
spot prices, blockchain network characteristics, or data regarding search queries for cryp-
tocurrencies. This might be for good reason, as Kristoufek (2013) found a correlation
between bitcoin prices and online sentiment as measured by Google Trends data and
Wikipedia search queries. Similarly, he found a significant relation between bitcoin prices

and two bitcoin network characteristics: mining difficulty and hash rate in succeeding
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research (Kristoufek, 2015). Moreover, Chen et al. (2020)) chose to include gold spot
price, Baidu and Google search volume for the word “bitcoin”, and multiple bitcoin net-
work characteristics after analyzing feature importance using the Boruta package. Boruta
works similarly to a random forest classifier and can be used to evaluate which attributes
are important (Kursa, Rudnicki, et al., 2010)). In brief, a large variety of features might
carry predictive value for bitcoin prices but some features might not be applicable at
every frequency. For example, usually mining difficulty and hash rate are only available
at a daily frequency. Taking the modelling decisions into account when selecting features
might therefore prove essential.

Existing literature exhibits examples of different models that were fitted to predict
bitcoin prices. As mentioned the frequency of trading affects the set of features which can
be used, it seems that a similar effect is present regarding the choice for which model to
use. Statistical methods like logistic regression, linear discriminant analysis, or generalized
linear models outperform machine learning strategies when using data at a daily frequency
according to the results of both Madan et al. (2015) and Chen et al. (2020). It might
therefore be unsurprising that Sebastido and Godinho (2021) obtained an accuracy of 0.57
when fitting a random forest to daily data whereas the accuracy of statistical methods in
Chen et al. (2020)) was equal to 0.65 on average. At a 5 minute frequency, however, Chen
et al. (2020) showed that machine learning techniques outperformed statistical methods,
classifying price movements correctly in 62.2% of cases versus 53% for statistical methods.
In light of these results, it seems reasonable to only consider machine learning strategies
when constructing a high-frequency trading strategy:.

Even when excluding statistical methods, many machine learning strategies to choose
from remain. Most authors seem to opt for either a random forest or a recurrent neural
network like a long short-term memory network. Other viable options might be support
vector machines (Sebastiao & Godinho, 2021) or gradient boosting classifiers (Chen et al.,
2020)). Vo and Yost-Bremm (2020) opted to fit a random forest on price data and some
technical indicators to classify price movements, i.e. prices go up or go down during the
next period. Their random forest was trained on multiple frequencies, from 1 minute up
to 90 days. Their classifier achieved the highest F'1 score when predicting price movements
at a 15-minute frequency. Moreover, this classifier based on a random forest outperformed
a multilayer perceptron network when considering F1 metrics. This is not very surprising
as multilayer perceptron (MLP) networks seem generally regarded as ill-adapted for time
series. It could therefore be more appropriate to test against more sophisticated neural
networks, recurrent neural networks would probably be better suited for time series data.

An example of such a more sophisticated recurrent neural network is employed by Chen
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et al. (2020) who built a classifier by fitting a long short-term memory network for 5-
minute bitcoin price data. Although this classifier outperformed a random forest fitted
to the same data, it performed worse than the random forest classifier as in Vo and Yost-
Bremm (2020). At the same 5-minute frequency Vo and Yost-Bremm (2020) managed
to achieve an Fl-score of 0.902 in contrast to the Fl-score of 0.776 as achieved by the
LSTM network in Chen et al. (2020). This difference might be due to the increased
efficiency of the bitcoin market as Chen et al. (2020)) use data from 2017-2018 whereas
Vo and Yost-Bremm (2020) use data from 2015 up to and including 2017. This increased
efficiency might also be inferred from the returns as specified by Vo and Yost-Bremm
(2020), interestingly the returns yielded by their classifier decreased substantially since
2015. Annual returns for the random forest classifier were equal to 932%, 47%, and 205%
for 2015, 2016, and 2017 respectively. All in all, it is hard to pick the “best method”,
it seems however that results of the past do not automatically generalize to the future,
possibly due to a more efficient market.

A changing bitcoin market might mean that interest should go out to the application of
machine learning strategies to an efficient market. Nelson et al. (2017)) do just that by em-
ploying an LSTM network to predict the prices of exchange-traded funds on the Brazilian
Bovespa (nowadays: B3) exchange. Nelson et al. (2017) fitted an LSTM network to 15-
minute candlestick (OHLC) data and technical indicators derived from these candlesticks.
Surprisingly even in this presumably highly efficient market, an accuracy was achieved of
up to 55.9%. Moreover, trading based on this classification yielded relatively high returns
per trade compared to the included baselines, which suggests that their strategy might
have remained profitable, even when including trading costs. As predictions and trades
are done at a 15-minute frequency trading costs accumulate rather quickly if returns per
trade are insufficient. In an attempt to overcome the hurdle that transaction costs pose
Resta (2006]) devised a model that aimed to trade only on strong signals. This model thus
had the ability to do nothing, in contrast to the strategy utilized by Nelson et al. (2017)
which took either a long or a short position in every period. Resta (2006) fitted a neural
network to the OHLCV data for the NASDAQ index at a 30-minute frequency. Evaluation
on the test set showed that the constructed strategy remained profitable for transaction
costs of up to 0.02%. Transaction costs on the cryptocurrency market are usually a mag-
nitude of order larger. Transactions costs of 0.2% for opening and subsequently closing a
position are not uncommon (Binance, 2021)). Sebastiao and Godinho (2021) go as far as
including transaction fees of 0.5% in their calculations. Just like Resta (2006)), they built
a strategy in which trades take place only in the presence of strong signals. To this end,

they constructed an ensemble model which combined a linear model, a random forest,
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and a support vector machine. This ensemble only made a buy decision if each individual
method predicted the same upwards price movement (short-selling was excluded). This
differs from Resta (2006) who defined the problem as a three-class classification: prices go
up, nothing happens, or prices go down. Sebastiao and Godinho (2021) achieved an an-
nualized return of 1.62% when applying their best performing ensemble on recent bitcoin
price data, this was also the only ensemble of the three that managed to yield a posi-
tive return. Note however that the ensembles were evaluated in a down-trending market
as the buy and hold strategy resulted in a return of -54.9%, the restriction of no short
selling was therefore especially harsh. When applying the same ensemble on the market
for ethereum however they achieved an annualized return of 14.35% after subtraction of
transaction fees. Overall, these results suggest that even if the bitcoin market has be-
come more efficient positive returns could still be realised if transaction costs remain low
enough.

The large effect that the inclusion of trading fees has on the profitability of a trad-
ing strategy emphasises the need for a solid evaluation framework. Precision, accuracy,
and recall statistics based on a confusion matrix give insight into the statistical side of
performance. However, these statistics don’t take the magnitude of price movements into
account. Improving hereupon could be done by including cumulative returns as done by
Sebastiao and Godinho (2021)) for example. Using another strategy as a baseline to com-
pare the strategy of interest against might be considered the next step up. The Sharpe
ratio as included by Vo and Yost-Bremm (2020) is an example of this, it measures if
and how reliably a strategy outperforms risk-free assets like bonds. One might suggest
however that in a market that grows as rapidly as the cryptocurrency market has done re-
cently, the comparison with the risk-free rate yields a rather optimistic result. To provide
a more reliable evaluation Nelson et al. (2017)) test their obtained results against multiple
baselines. The performance of their LSTM network is tested against two other trading
strategies based on machine learning methods, namely a random forest and a multilayer
perceptron (MLP) neural network. Besides, they also test their preferred strategy against
more simple investment strategies: a buy and hold strategy, a naive forecast (if prices went
up last period they will go up again), and a pseudo-random strategy (prediction based
on class distribution). By extensively comparing the performance of their LSTM network
against these alternatives they managed to make their results better interpretable. Due
to the vanishingly small signal-to-noise ratio in stock data such extensive comparisons are
necessary to make substantiated claims about the performance of a strategy.

The cited literature will be used when devising a design for this research. To this end,

ensembles similar to the ensembles of Sebastiao and Godinho (2021)) will be employed.
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However, these ensembles will be built from different methods. As Vo and Yost-Bremm
(2020) achieved a low classification error using random forests, these will be part of the
ensemble. Furthermore, also an LSTM network will be included, as done by Chen et al.
(2020), among others. Using these methods an ensemble is constructed to classify price
movements in a way similar to Resta (2006). However, unlike Resta (2006), only long
positions will be considered, much like Sebastiao and Godinho (2021)). The research design

will be expanded upon further in the following section.

3 Research Design

3.1 Data and preprocessing

Tick by tick price data for bitcoin from 2014 until 2021 is obtained from the Kraken
exchange. Kraken is a well-established exchange that has been online since 2011. Only
one exchange is considered as Vo and Yost-Bremm (2020) show that ML methods are
tolerant to differences between exchanges. As stated before, interest goes out to the
profitability of constructed strategies in recent times due to the possibly increasingly
efficient bitcoin market. Consequently, a subset of the data is made containing only the
two most recent years, 2019-2021. Of these two years, the first one will be used as a
validation set whereas the last year will be used for final evaluation. The bitcoin price
development during the period from 2019 to 2021 is plotted in Figure

Figure 1: 15-minute closing prices
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Due to the use of a rolling window, not the entire last year is used for testing: the first
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180 days of the data will only be used as the training set for the first iterations of the
rolling window. This is illustrated in Figure 2]

Figure 2: First iteration of rolling window for evaluation
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The tick by tick data is aggregated into Open-High-Low-Close-Volume (OHLCV) data

at a 15-minute frequency. Returns are then derived as follows:

Pt — Pt—1
Ty = ’
Pt
with p;, the closing price at time ¢. A classifier is constructed which attempts to predict
the direction of price movements and whether price movements are “large”. For this
purpose, the target variable is derived from the individual returns in a way similar to

Resta (2006).

1 if Tt>9

Y = .
0 if TtSQ

Here 6 signifies a threshold value subject to § € {0,0.1,0.2}. The inclusion of such a
threshold is done in the hope that trades will only occur when price movements exceed the
cost incurred from trading fees. Note that 6 only affects the target variable on which the
methods are trained. Here, 7 is used for the level of transaction cost during profitability
calculations. For example, the ensembles trained using # = 0 are evaluated for multiple

values of 7. This approach allows conclusions regarding the profitability of the zero
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threshold ensemble under various levels of transaction costs.

Multiple technical indicators are included as features, these technical indicators are
derived from the OHLCV data by making use of the Pandas-TA package. Since Mc-
Nally et al. (2018) identified the 5 and 10-day Simple Moving Average (SMA) as the
most important features in predicting bitcoin prices, a simple moving average is included.
Moreover, as Vo and Yost-Bremm (2020)) constructed a profitable trading strategy by
including the Relative Strength Index (RSI), stochastic oscillator, Williams %R, Moving
Average Convergence Divergence (MACD), and On Balance Volume (OBV), these indi-
cators are utilized here as well. Vo and Yost-Bremm (2020) mention that their classifier
performs well under the default settings of these indicators, therefore, no further tweaking
is done to indicator settings. Similar to Chen et al. (2020) gold spot price and trading

volume is included. Lastly, all features are standardized as follows:
th:;ja le [1,n],j€[l,k],

where Z,; is the standard score for entry z;;, feature j at time ¢. Z; and s; are the sample
mean and deviation for feature j respectively. n is the observation count and k the feature

count. All this is as implemented by the “StandardScaler” in scikit-learn.

3.2 Machine learning methods

First Long Short-Term Memory (LSTM) networks are discussed, then random forests.
Lastly, attention is payed to the topic of combining these two methods in an ensemble.
LSTM networks are a type of Recurrent Neural Network (RNN) typically used when
analyzing sequence data. Moreover, an LSTM network consists of a chained series of

gated cells. A chain of three gated cells is illustrated in Figure [3

Figure 3: LSTM cells, retrieved from Olah (2015), section “LSTM networks”
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Each cell consists of a forget gate, a memory gate, and an output gate. The forget gate
is trained to select which parts of the previous cell state are forgotten, and which will be
put forward by remaining in the cell state. As stated by Olah (2015)), the current input
and previous cell output are put through a sigmoid function, which outputs a number
ranging from 0 to 1 for each value in the cell state. A zero means disregard this value
in the cell state completely, a 1 means that the value is propagated forward through the
cell state, unchanged. The input gate enables the network to add to the current cell state
which is then used in future periods. Lastly, the output gate combines current cell inputs
and cell state to generate an output, in this case, a class. This summarizes the article of
Olah (2015)) which explains the inner workings of the LSTM cells in more detail.

Keras is used to implement the LSTM network, which is a deep learning framework
running on top of Google’s TensorFlow. Using this toolkit the LSTM network is compiled
with 2 hidden layers, each containing 36 hidden units. A dropout rate of 0.2 is used, which
means that 20% of inputs are randomly selected and set equal to 0. Furthermore, the
LSTM is trained on samples that contain 96 timesteps, therefore, each sample contains all
inputs of the 24 hours leading up to the newest observation in the training set. Lastly, at
each iteration of the sliding window, the network is trained over 10 epochs, as this resulted
in the lowest validation loss, see Figure through The dropout rate, amount of
timesteps, and number of hidden units are selected by trial and error over a small subset
of the training data. A grid search over the full training set, or a full grid search on this
subset even, was computationally infeasible. In light of these computational limitations,
the default activation functions were used, namely a tanh function in the output gate
and a sigmoid function in the other gates. Using these default activations allowed the
Keras package to train the network using a cuDNN (CUDA Deep Neural Network library)
implementation, utilizing the GPU and drastically reducing training times. Lastly, the
output of the LSTM layers are put through a sigmoid function, which yields a probabilistic
value to be used for classification.

Random forests are an ensemble learning method based on decision trees. When fitting
an RF many decision trees are built on various bootstrapped samples using various random
sets of features. Once trained, data is run through all decision trees, after which results
are averaged to obtain a classification. Due to this innate randomization, random forests
are less prone to overfitting, as described more in-depth by Breiman (2001). Various
values for the number of trees are considered. According to Breiman (2001, changes to
this parameter may have a noticeable effect on results. To utilize random forests the
implementation of scikit-learn is used.

Following the work of Sebastido and Godinho (2021) an ensemble is constructed by
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combining an LSTM network with a random forest. Both are fitted on the same data,
predicting whether there will be a large price increase and trading should occur, or not.
Note that both the LSTM network as the random forest output a value between 0 and 1.

the prediction of the ensemble is then given as below

R 1 if gf>05A98™ > 0.5
Y1 = .
0 else

As both the LSTM network and the random forest give probabilistic outputs, an ensemble

can also be formed by linearly combining predictions as follows:

) L if a-gf™+(1-a)-g'>05
o if a4 (1—a) g <05
Where the value of « is set to maximize profit for 7 = 0.08%, using the validation set.

A rolling window is used in which the LSTM network and random forest are repeat-
edly trained on a window that slides forward. Ideally, an approach as in Nelson et al.
(2017) is adopted such that the network is trained daily. However, due to computational
restrictions, the network and random forest are trained every 10 days here. The decision
of how much historic data to include is more difficult. Hochreiter and Schmidhuber (1997)
suggest that LSTM can pick up on long time lags of signals, LSTM might therefore be
suited for the inclusion of more historic data. Since LSTM networks were designed with
time dependencies in mind it seems reasonable to assume that RF might not be able to
pick up on these long lags of signals as well. Therefore multiple training period lengths
are considered, namely 30, 90 and, 180 days. The sliding window then consists out of
respectively 30, 90, or 180 days of training followed by testing on 10 days of unseen data.
After training and testing is completed, the sliding window moves ahead 10 days for the

next iteration.
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3.3 Evaluation

Evaluation of classifier performance will proceed by including accuracy, precision, recall,

and F1 score. These are calculated as follows:

. TP
recision = ————
Precslon = rp T Fp

y_ TP
T TP EN
TP+ TN
accuraCy = ——,
n

precision * recall

Fl=2x% — ,

precision + recall
where n is the size of the test set, TP, I'P, and F'N denote the true positive count, false-
positive count, and false-negative count respectively. Cumulative profits will be included

and calculated as follows:

m

Riot = H (14 g(re — 1)),
t=1
with ¢; the binary prediction at time ¢, r; the realised return at time t, and 7 the trans-
action fee. ¢; takes on either the value 1 or 0, implying a buy or don’t buy decision,
respectively. The product of the prediction and the transaction fee subtracted from the
realised return ensures that returns are positive only if a buy decision is made when re-
turns exceed transaction costs. Besides the strategy based on the ensemble, investment
strategies to compare against are included in a way similar to Nelson et al. (2017). To
this end, a buy and hold strategy is utilized for which holds that:

close close
R — P — D1
tot — )

close
1

and a naive forecast is made for which predictions are given by

ﬁfaive = Yi-1.
The random forest and LSTM network trained using 6 = 0 are also used as a baseline.
Besides the comparisons described above we test the following hypotheses to deter-

mine whether the Sharpe ratio’s (SR) of the strategies based on ensemble predictions are
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significantly higher than the Sharpe ratio of the buy and hold strategy:

HO : SRens = SRb&th
Ha : SRens > SRb&h,

where the (annualized) Sharpe ratio is given as in Sebastidao and Godinho (2021):

SR = "\/365.
o

With p the daily mean return and o the standard deviation of said returns. These hy-
potheses are tested by making use of the following statistic and its asymptotic distribution
under the null hypothesis as described by Bailey and Lopez de Prado (2012):

(Schs — StRb&h) i> N (O, O-gns + Ug&h) 5

with

Y

\/ |+ 1SR? — 3SR + "2 SR
0’ pr—
m

where SR is the Sharpe ratio, m the size of the test set, 73 the skewness of daily returns,
and 74 the kurtosis of daily returns.

By carrying out the research as specified in this section, the body of knowledge is
expanded in a few ways. This research mainly extends upon the work of Sebastiao and
Godinho (2021)) by applying an ensemble built from different machine learning methods
to 15-minute data, instead of low-frequency (daily) data. Current research concerning
cryptocurrency trading seems to focus on predicting price movements such that trading
occurs in every period. This ensemble might be used in the construction of sparse trading
strategies as a threshold is implemented, similar to Resta, 2006, Lastly, an attempt is
made to provide handles to (institutional) investors looking to enter the cryptocurrency
market by applying the constructed ensemble in a realistic and current setting. This way,

a strategy that performs well during backtesting might be used for live trading.

Results

All reported results are obtained using a sliding window containing 180 days of training

data, unless stated otherwise. The methods using 90 or 30 days of historical data per-
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formed similarly or inferior to methods using 180 days on the validation set, as can be
observed in the appendix. Some further results using 90 or 30 days of historical data are
included in the appendix. The random forest was generated on the validation set using
50, 100, 200, 500, and 1000 trees. Changing the amount of trees did not seem to affect
performance much. Furthermore, as Vo and Yost-Bremm (2020) seemed to obtain the
best results using 100 trees, all results here are obtained using 100 trees. Some results
regarding the choice for the number of trees are reported in the appendix.

The ensemble constructed using a weighted average of the RF and LSTM predictions
only outperformed the individual methods for § = 0.2. At the other thresholds, profit
was highest when a = 1, resulting in a pure LSTM. Therefore, “Weighted avg ensemble”,
refers to the ensemble trained using 6 = 0.2 and constructed using a = 0.58. See Figure
through [10] for these results.

First statistics regarding the classification performance will be reviewed. Then, the
profitability of the constructed strategies is considered. Lastly, some statistics are reported
regarding financial performance.

Tables[1|through [3| provide classification reports for the ensemble, the individual meth-
ods, and the naive forecast for the three thresholds. Increasing the threshold leads to
imbalanced datasets. Therefore, the accuracy is less informative for the methods trained
using a non-zero threshold, of which the classification reports are shown in Table [2| and
Table |3l To evaluate performance based on these classification results, the context of the
problem needs to be considered. False negatives mean that no buy decision is made, even
though it should have. The cost incurred as a consequence of this mistake is zero, not
buying does not carry a cost. On the other hand, false positives are wrongly made buy
decisions. These mistakes are very costly as a buy decision is made while returns might be
negative, or insufficient to offset transaction costs. Therefore, the key metrics to consider
are precision for the positive class and recall for the negative class. High precision for
the positive class means that in periods for which a price increase is predicted, this price
increase is likely to materialize. Similarly, a high recall for the negative class indicates a
low number of wrongly predicted buy decisions, compared to the support of the negative
class. Using the table, comparisons can be drawn about the ensemble trained using a zero
threshold and the individual methods used in the construction of this ensemble. For all
three thresholds the ensemble outperforms the individual methods, in terms of precision.
The recall for the negative class is also higher for all ensembles. As expected the ensem-
bles achieve lower recall for the positive class, indicative of more false negatives. Thus,
the ensembles are able to predict a price increase more precisely, even though picking up

on less of the price increases compared to the individual methods.
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All methods outperform the naive forecast on the test set, taking into account both

accuracy and positive class precision.

Table 1: Classification reports, 8 =0

Method class precision recall fl-score observation count accuracy
Ensemble 0 0.51 0.73 0.60 8744 0.519
1 0.55 0.32 0.40 9112
LSTM 0 0.52 0.52 0.52 8744 0.534
1 0.54 0.55 0.54 9112
RF 0 0.51 0.57 0.54 8744 0.518
1 0.53 0.47 0.50 9112
Naive forecast 0 0.47 0.47 0.47 8744 0.479
1 0.49 0.49 0.49 9112

Table 2: Classification reports, § = 0.1

Method class precision recall fl-score observation count accuracy
Ensemble 0 0.71 0.99 0.83 12621 0.71
1 0.57 0.05 0.08 5235
LSTM 0 0.72 0.97 0.82 12621 0.709
1 0.52 0.08 0.14 5235
RF 0 0.72 0.89 0.80 12621 0.681
1 0.40 0.17 0.24 5235
Naive forecast 0 0.71 0.71 0.71 12621 0.597
1 0.31 0.31 0.31 5235
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Table 3: Classification reports, 6 = 0.2

Method class precision recall fl-score observation count accuracy

Ensemble 0 0.84 1.00 0.91 14998 0.84
1 0.50 0.02 0.04 2858

Weighted avg ensemble 0 0.84 0.99 0.91 14998 0.84
1 0.50 0.04 0.08 2858

LSTM 0 0.84 0.99 0.91 14998 0.839
1 0.47 0.04 0.07 2858

RF 0 0.85 0.97 0.91 14998 0.831
1 0.38 0.09 0.15 2858

Naive forecast 0 0.85 0.72 0.78 14998 0.66
1 0.19 0.35 0.25 2858

From Table {4] it can be seen that as the threshold during training (@) increases, the
time in the market drastically reduces. Furthermore, the LSTM network takes a long
position less often than the random forest for 8 > 0. A figure comparing the profitability
of these individual methods is included in the appendix, see Figure [7}

The predictions of the ensembles (excluding the weighted average ensemble) are given
by the intersection between the predictions of the LSTM network and the predictions of
the RF. Naturally, the ensembles enter the market less than the individual methods for

every value of 6.

Table 4: % of time in the market

0 Ensemble LSTM RF

0 29.56%  48.58% 44.88%
0.1 2.48% 4.31%  12.59%
0.2 0.73% 1.19%  3.87T%

In Table [5| the accumulated value on a hypothetical investment of 100$ is displayed. The
buy and hold strategy outperforms all other methods, even when assuming transaction
fees to be zero. Furthermore, if transaction fees are assumed to be zero, the ensembles
perform worse than the individual methods. When transaction costs are positive the
ensembles outperform the individual methods. Furthermore, the ensemble trained using
6 = 0.1 remains profitable for the highest level of transaction costs. The naive forecast
performs worst, only exceeding profits of some ensembles when trading fees are assumed

to be zero.
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Table 5: Profit under transaction costs

Method te=0 tc=0.05% tc=0.1%
Ensemble, 6 = 0 213.20 15.22 1.08
Ensemble, 6 = 0.1 169.29 135.68 108.73
Ensemble, 6§ = 0.2 110.33  103.33 96.78
Weighted avg ensemble 127.75 112.52 99.11
LSTM, 6 =0 252.25 3.30 0.04
RF, 0=0 257.57 4.68 0.08
Naive forecast 157.40 1.65 0.02
Buy and hold 289.68 - -

Below, in Figure [4] the accumulated value over the test set of a 100$ investment is
plotted against transaction costs (7). Besides the ensembles, the LSTM network without
threshold is included as a baseline. The horizontal dotted line indicates the starting
value, 100 dollars. Once again, it is apparent that the ensemble trained using 6 = 0.1
remains profitable for the highest level of transaction costs. The methods trained using a
zero threshold quickly return a loss as transaction costs exceed 0.01%. Note that realistic
roundtrip transaction fees are 0.2% on the Kraken exchange and at least 0.08% on Binance.
At transaction fees of 0.08% only the ensemble trained using 6 = 0.1 is profitable, none

of the methods are profitable for transaction fees of 0.2%.

Figure 4: Value accumulated versus transaction fees

250 —— Ensemble, 6=0
Ensemble, 6 =0.1
Ensemble, 6 =0.2
Weighted avg ensemble

LSTMO =0

Value accumulated over test set

0.00 0.02 0.04 0.06 0.08 0.10
Transaction fee (%)

Table [6] contains performance statistics calculated under the assumption of no trans-
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action fees. The maximum drawdown is the largest difference between a peak and sub-
sequent through, conveying a sense of tail risk. The ensembles have a smaller maximum
drawdown than the other methods. Furthermore, the ensembles attain a higher mean
profit per trade compared to the alternatives. The annualized Sharpe ratio relates the
return of a strategy to its volatility. In this regard, the ensemble using 6 = 0.1 performs
best, achieving a Sharpe ratio of 7.5. Volatility is included as the standard deviation of
daily percentage returns.

The hypotheses as stated under the Research Design section are tested:

HO SR = SRb&h
H, : SR > SRb&h,

The buy and hold strategy is taken as baseline. The Sharpe ratio’s of the ensembles trained
using 6 = 0 or § = 0.1 exceed that of the buy and hold strategy at a 1% confidence level,
just like the LSTM based strategy using 8 = 0.1. Furthermore, the Sharpe ratio of the
random forest trading strategy using 6 = 0, exceeds that of the buy and hold at a 5%

confidence level.

Table 6: Performance statistics

Method Max. Drawdown Mean profit per trade Sharpe Ratio Std. deviation (%)
Ensemble, 6§ = 0 -9.0% 0.0148% 5. pAokk 1.45
Ensemble, 6 = 0.1 -7.0% 0.1209% 7.5%HK 0.73
Ensemble, 6 = 0.2 -8.0% 0.078% 2.5 0.40
Weighted avg ensemble -10.0% 0.0994% 2.9 0.88
LSTM, 6 =0 -16.0% 0.0112% 5. 3HH* 1.87
RF,0=0 -12.0% 0.0122% 5.4%** 1.88
Naive forecast -22.0% 0.0054% 2.4 2.10
Buy and hold -20.0% 0.0064% 4.2 (baseline) 2.80

() p=0.1, (¥*) p=0.05, (+**) p=0.01

Figure [5| shows the cumulative returns of the ensembles as well as the buy and hold
strategy, assuming transaction fees to be 0. The ensembles trained using positive values
of 6 seem largely unaffected by price fluctuations exhibited in the buy and hold strategy.

Their eventual return is lower, however.
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Figure 5: Cumulative returns using various thresholds
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In Figure [6] feature importances are given, calculated by the mean impurity decrease
over all trees of the random forest. The standard deviation of the impurity decrease over
all trees is illustrated by the error bars. Most indicators attain a higher feature importance
compared to the price data of the current period. Trade volume in the current period also
seems more important than the candlestick data. Gold closing price and trade volume
provide a significant, positive, mean decrease in impurity, although being less influential

than most indicators.

Figure 6: Feature importance calculated by mean decrease in impurity
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4 Conclusion and Discussion

A random forest and an LSTM network were combined in an ensemble which took a long
position only if both methods agreed to do so. Such ensembles yielded worse returns
under the assumption of no trading fees, upon inclusion of said trading fees the ensem-
bles outperformed the individual methods. Furthermore, the ensembles exhibited lower
volatility than the individual methods. Besides combining methods to form an ensemble,
reducing the number of trades made, a threshold was introduced. Using this threshold
the methods were trained to make a buy decision only if the price increase was sufficiently
large, further reducing the amount of trading done. This proved to be a valuable tool for
increasing the average profit per trade. The far reduced number of trades in the strategies
which combined the ensemble with such a threshold did result in lower returns. Under
realistic transaction costs only the ensemble trained using # = 0.1 yields a slight profit.
However, this ensemble is still outperformed by the buy and hold strategy.

These results are largely in line with the findings of Sebastiao and Godinho (2021)), who
found that most ensembles generated a loss when used for bitcoin trading. On the other
hand, Vo and Yost-Bremm (2020) constructed an extremely profitable strategy using just
a random forest. Their classifier achieved an F1 score of 0.901 on historic data. These
results could not be reproduced while using recent data. This could be indicative of a
now more developed, more efficient bitcoin market.

Some limitations of the current research should be noted. All strategies were tested
from 29/6,/2020 until 1/1/2021, in this period the bitcoin price increased rather rapidly
with only a few dips. As strategies were only able to take a long position this growth
might have positively inflated results, as seen from the naive forecast generating a positive
return. However, the high mean return and low maximum drawdown of the ensembles
show that the predictions are better than random. Moreover, the results show that even
in periods of market downturn the ensembles do not incur large losses.

Another limitation is the mere use of trial and error for setting the LSTM network
parameters, instead of a grid search over all parameters. The ensembles may therefore
still perform sub-optimal. Since training an LSTM network using 180 days of historical
data already took several hours, a grid search was deemed infeasible. More extensive
parameter optimization could result in performance gains.

The results allow for future research in various directions. A natural extension could be
the inclusion of more individual methods in the construction of ensembles. Other neural
networks come to mind, like the LSTM fully convolutional network (LSTM-FCN), shown

to perform outstandingly on time series classification tasks (Karim et al.,2019). Another
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angle might be extending the classification task by allowing short selling, extending the
problem to a 3-class classification. Furthermore, if more computational power can be
acquired, one could consider including more historical data and performing a grid search
for the LSTM parameters. Lastly, as the main issue of the strategies posed here seems to
be the accumulation of transaction costs, it might be interesting to lower the frequency
of trading. As trading is done at lower frequencies, transaction costs pose less of an issue.

The results have some practical implications. Bitcoin trading, using ensembles of
random forests and LSTM networks, seems barely profitable for individuals, as the trans-
action fees often exceed the average profit per trade. Such an ensemble might still be
viable for institutional investors, as trading in large volumes tends to lower transaction
fees, due to tiered pricing (Binance, 2021). The average profit per trade may therefore
exceed transaction fees for corporate investors.

For risk-averse corporations, an approach as employed here might be useful. The
ensembles seemed to perform consistently even when the market fluctuated wildly, as
indicated by the maximum drawdown of 7% for one of these ensembles.

Regarding the research question: “How can random forests and LSTM networks be
used and combined to construct a profitable sparse trading strategy for cryptocurrency
when facing transaction costs”. The findings in this paper suggest that it is possible to
create a slightly profitable trading strategy while accounting for a realistic, although low
level of transaction fees. In practice however, trading at this low level of transaction
fees is only possible for corporations that are able to trade large volumes. Improvements
are needed to make automated trading using LSTM-RF ensembles viable for individuals.
Such improvements can possibly be made by including more historical data, using a larger
variety of machine learning methods in the construction of the ensembles, or further
tweaking the LSTM and RF used here.
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5 Appendix

Table 7: LSTM classification reports for different rolling window sizes

Method class precision recall fl-score observation count accuracy

180 days, 8 =0 0 0.52 0.54 0.53 8744 0.529
1 0.54 0.51 0.53 9112

90 days, # =0 0 0.51 0.53 0.52 8744 0.522
1 0.53 0.52 0.53 9112

30 days, 6 =0 0 0.50 0.54 0.52 8744 0.514
1 0.53 0.49 0.50 9112

180 days, 8 =0.1 0 0.72 0.97 0.82 12621 0.709
1 0.52 0.08 0.13 5235

90 days, # = 0.1 0 0.72 0.95 0.82 12621 0.698
1 0.43 0.09 0.14 5235

30 days, 8 = 0.1 0 0.71 0.96 0.82 12621 0.696
1 0.40 0.07 0.12 5235

180 days, 8 =0.2 0 0.84 0.99 0.91 14998 0.839
1 0.47 0.04 0.07 2858

90 days, # = 0.2 0 0.84 0.99 0.91 14998 0.837
1 0.41 0.05 0.08 2858

30 days, 8 = 0.2 0 0.84 0.99 0.91 14998 0.836
1 0.32 0.02 0.04 2858
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Table 8: RF classification reports for different rolling window sizes

Method class precision recall fl-score observation count accuracy

180 days, 8 =0 0 0.51 0.57 0.54 8744 0.518
1 0.53 0.47 0.50 9112

90 days, 0 =0 0 0.51 0.55 0.53 8744 0.522
1 0.53 0.50 0.51 9112

30 days, § =0 0 0.50 0.58 0.54 8744 0.511
1 0.52 0.44 0.48 9112

180 days, # =0.1 0 0.72 0.89 0.80 12621 0.681
1 0.40 0.17 0.24 5235

90 days, 8 = 0.1 0 0.72 0.86 0.79 12621 0.668
1 0.38 0.20 0.26 5235

30 days, # = 0.1 0 0.72 0.83 0.77 12621 0.655
1 0.36 0.23 0.28 5235

180 days, # =0.2 0 0.85 0.97 0.91 14998 0.831
1 0.38 0.09 0.15 2858

90 days, # = 0.2 0 0.85 0.96 0.90 14998 0.822
1 0.34 0.11 0.17 2858

30 days, # = 0.2 0 0.85 0.93 0.89 14998 0.803
1 0.29 0.16 0.21 2858

Table 9: Profit of ensembles by rolling window size

Method te=0 tc=0.05% tc=0.1%
180 days, 8 =0  213.20 15.22 1.08
90 days, # = 0 226.19 14.64 0.95
30 days, # =0 181.81 14.73 1.19
180 days, # = 0.1 169.29 135.68 108.73
90 days, 8 = 0.1 136.68 102.12 76.30
30 days, # = 0.1  117.16 93.74 75.00
180 days, § = 0.2 110.33 103.33 96.78
90 days, # = 0.2  117.85 107.50 98.05
30 days, 6 = 0.2 98.74 93.13 87.83
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Table 10: Performance statistics for ensembles by rolling window size

Method Max. Drawdown Mean profit per trade Sharpe Ratio Std. deviation (%)
180 days, 0 =0 -9.0% 0.0148% 5.5k 1.45
90 days, 8 =0 -11.0% 0.0154% 6.5%** 1.33
30 days, 8 =0 -14.0% 0.0123% 4.3 1.49
180 days, # = 0.1 -7.0% 0.1209% 7.5%HK 0.73
90 days, # = 0.1  -8.0% 0.0552% 4.3 0.76
30 days, # =0.1  -9.0% 0.037% 2.5 0.68
180 days, # = 0.2 -8.0% 0.078% 2.5 0.40
90 days, 6 = 0.2 -8.0% 0.0925% 2.4 0.72
30 days, 6 = 0.2  -10.0% -0.0085% -0.2 0.59

Table 11: Classification results of RF with different # of trees, on validation set

Method class precision recall fl-score observation count accuracy

50 trees 0 0.53 0.50 0.51 9023 0.518
1 0.51 0.53 0.52 8737

100 trees 0 0.53 0.48 0.50 9023 0.52
1 0.51 0.56 0.53 8737

200 trees 0 0.53 0.47 0.50 9023 0.522
1 0.51 0.58 0.54 8737

500 trees 0 0.53 0.45 0.49 9023 0.52
1 0.51 0.59 0.55 8737

1000 trees 0 0.54 0.45 0.49 9023 0.524
1 0.51 0.60 0.55 8737

Table 12: Profitability of RF with different # of trees, on validation set

Method tc=0 tc=0.01% tc=0.05%

o0 trees 101.43 40.61 1.04
100 trees  107.67 41.26 0.89
200 trees  109.54 40.76 0.78
200 trees  94.30 34.12 0.58
1000 trees 116.43 41.78 0.69
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Figure 7: Value accumulated versus transaction fees for RF and LSTM, 180 days of training
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Figure 8: Accumulated value of 100 dollars, invested over training set, § = 0, 7 = 0.08%
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Figure 9: Accumulated value of 100 dollars, invested over training set, # = 0.1, 7 = 0.08%

60
50

40

Value

30
20

10

0.0 0.2 0.4 0.6 0.8 1.0

Figure 10: Accumulated value of 100 dollars, invested training set, # = 0.2, 7 = 0.08%
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Figure 11: Loss and validation loss versus epoch, § =0
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Figure 12: Loss and validation loss versus epoch, 6 = 0.1
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Figure 13: Loss and validation loss versus epoch, 6 = 0.2
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